Question

Two thin parallel slits that are 0.0117 mm apart are illuminated by a laser beam of...

Two thin parallel slits that are 0.0117 mm apart are illuminated by a laser beam of wavelength 620 nm.

(a) On a very large distant screen, what is the total number of bright fringes (those indicating complete constructive interference), including the central fringe and those on both sides of it? Solve this problem without calculating all the angles! (Hint: What is the largest that sin ? can be? What does this tell you is the largest value of m?)
____

(b) At what angle, relative to the original direction of the beam, will the fringe that is most distant from the central bright fringe occur?
± ____ °

Homework Answers

Answer #1

The condition for diffraction is, dsin = m               ...(1)
For the largest value of m, sin = 1
ie, d = m
m = d/
= (117 x 10-7) / (6.2 x 10-7)
= 18.87 = 18
Total number of bright fringe on either side = 2 x 18 = 36
Total number including the central maxima = 36 + 1 = 37

b)
Substituting m = 18 in equation (1),
(117 x 10-7) x sin = 18 x (6.2 x 10-7)
sin = 111.6 / 117 = 0.954
= sin-1(0.954)
= 72.52 degrees

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A pair of slits, separated by 0.1 mm, is illuminated by light having a wavelength of...
A pair of slits, separated by 0.1 mm, is illuminated by light having a wavelength of 500 nm. An interference pattern is observed on a screen 1.20 m from the slits. (a) Draw the diagram of the double slits and determine how far apart will adjacent bright interference fringes on the screen? (b) What are the angles of the first and second order fringes with respect to the zeroth order fringe? (c) Determine the position of the first and second...
Two narrow slits are illuminated by a laser with a wavelength of 578 nm. The interference...
Two narrow slits are illuminated by a laser with a wavelength of 578 nm. The interference pattern on a screen located x = 4.50 m away shows that the third-order bright fringe is located y = 9.10 cm away from the central bright fringe. Calculate the distance between the two slits. First you have to calculate the angle of the maximum. Then you can use the formula for bright fringes of double slits. Incorrect. Tries 2/20 Previous Tries The screen...
Two narrow slits are illuminated by a laser with a wavelength of 543 nm. The interference...
Two narrow slits are illuminated by a laser with a wavelength of 543 nm. The interference pattern on a screen located x = 4.50 m away shows that the third-order bright fringe is located y = 7.20 cm away from the central bright fringe. Calculate the distance between the two slits. ("1st order" means m=1, "second order" means m=2, etc).
Two slits spaced 0.130 mm apart are placed 90.0 cm from a screen and illuminated by...
Two slits spaced 0.130 mm apart are placed 90.0 cm from a screen and illuminated by coherent light with wavelength 550 nm. The intensity at the center of the central maximum is 4.30 × 10-6 W/m2. What is the distance on the screen between the third bright fringe and the sixth dark fringe? What is the intensity at a point midway between the center of the central maximum and the first minimum?
illuminated by a laser with a wavelength of 534 nm. The interference pattern on a screen...
illuminated by a laser with a wavelength of 534 nm. The interference pattern on a screen located x = 5.30 m away shows that the fourth-order bright fringe is located y = 7.70 cm away from the central bright fringe. Calculate the distance between the two slits. The screen is now moved 2.1 m further away. What is the new distance between the central and the fourth-order bright fringe?
A beam of electrons hits a pair of slits spaced a distance d apart (center-to-center). The...
A beam of electrons hits a pair of slits spaced a distance d apart (center-to-center). The wavelength of the electrons is 23.8 nm. After traveling through the slits, the electrons form an interference pattern on a screen located a distance 0.750 m from the slits. If the center of the second 'bright' fringe occurs 2.30 cm from the center of the central bright fringe on the screen, what is the separation, d, between the slits? How fast are the electrons...
A laser beam with a wavelength of 490 nm passes through a double-slits with a separation...
A laser beam with a wavelength of 490 nm passes through a double-slits with a separation of 0.04 mm and falls on a screen 60 cm behind the slits. (a) Find the positions of the 1 st and 2nd order bright fringes respected to the center on the screen. (b) Find the position of the 1 st -order dark fringe respected to the center on the screen.
Two narrow slits 55 μm μ m apart are illuminated with light of wavelength 620nm n...
Two narrow slits 55 μm μ m apart are illuminated with light of wavelength 620nm n m . The light shines on a screen 1.2 m m distant. a) What is the angle of the mm = 2 bright fringe? b) How far is this fringe from the center of the pattern?
A pair of narrow, parallel slits separated by 0.300 mm is illuminated by green light (?...
A pair of narrow, parallel slits separated by 0.300 mm is illuminated by green light (? = 546.1 nm). The interference pattern is observed on a screen 1.10 m away from the plane of the parallel slits. (a) Calculate the distance from the central maximum to the first bright region on either side of the central maximum. ________________mm (b) Calculate the distance between the first and second dark bands in the interference pattern. ________________mm
Two slits are separated by 0.320 mm. A beam of 482.0 nm light strikes the slits,...
Two slits are separated by 0.320 mm. A beam of 482.0 nm light strikes the slits, producing an interference pattern on a screen. The screen is located 2.30 m from the slits. Find the distance from the first dark fringe on one side of the central maximum to the second dark fringe on the other side. Please write clearly and legibly!