Question

A solid 2.25 kg disk is initially spinning with an angular velocity of ωi = <0,...

A solid 2.25 kg disk is initially spinning with an angular velocity of ωi = <0, 0, 3.0> s −1 . A constant torque is applied for 3.0 s, increasing its angular velocity to ωf = <0, 0, 6.0> s −1 .

(a) What is the change in the rotational kinetic energy of the disk?

(b) What torque was applied in order to accelerate the disk?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Point Pis on the rim of a large Spinning Disk of mass 10.0 kg and radius...
Point Pis on the rim of a large Spinning Disk of mass 10.0 kg and radius 2.58 m. At time t=0.00 s the disk has an angular velocity of 4.00 rad/s and rotates counterclockwise about its center O, and Pis on the x-axis. A net applied CW torque of 20.0 m-N causes the wheel to undergo a uniform angular acceleration. The magnitude of the total acceleration (m/s2) at point Pwhen t = 15.0 s is? The angular velocity of the...
A solid disk of mass m1 = 9.8 kg and radius R = 0.25 m is...
A solid disk of mass m1 = 9.8 kg and radius R = 0.25 m is rotating with a constant angular velocity of ω = 30 rad/s. A thin rectangular rod with mass m2 = 3.9 kg and length L = 2R = 0.5 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 1)What is the initial angular momentum of the rod and disk system? 2)What is the...
A solid disk of mass m1 = 9.5 kg and radius R = 0.19 m is...
A solid disk of mass m1 = 9.5 kg and radius R = 0.19 m is rotating with a constant angular velocity of ω = 30 rad/s. A thin rectangular rod with mass m2 = 3.3 kg and length L = 2R = 0.38 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 1) What is the initial angular momentum of the rod and disk system? 2) What...
A solid disk of mass m1 = 9.3 kg and radius R = 0.21 m is...
A solid disk of mass m1 = 9.3 kg and radius R = 0.21 m is rotating with a constant angular velocity of ω = 30 rad/s. A thin rectangular rod with mass m2 = 3.8 kg and length L = 2R = 0.42 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 1) What is the initial angular momentum of the rod and disk system? 2) What...
A person with mass mp = 72 kg stands on a spinning platform disk with a...
A person with mass mp = 72 kg stands on a spinning platform disk with a radius of R = 1.83 m and mass md = 196 kg. The disk is initially spinning at ω = 2 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.61 m from the center). 3)What is the final angular velocity of the disk? 4)What is the change in the total kinetic energy of the person and...
(1 point) A circular disk of mass 0.2 kg and radius 27 cm, initially not rotating,...
(1 point) A circular disk of mass 0.2 kg and radius 27 cm, initially not rotating, slips down a thin spindle onto a turntable (disk) of mass 1.9 kg and the same radius, rotating freely at 3.1 rad/s. a) Find the new angular velocity of the combination; rad/s b) The change in the kinetic energy? J c) If the motor is switched on after the disk has landed, what is the constant torque needed to regain the original speed in...
A solid disk of mass m1 = 9 kg and radius R = 0.23 m is...
A solid disk of mass m1 = 9 kg and radius R = 0.23 m is rotating with a constant angular velocity of ω = 39 rad/s. A thin rectangular rod with mass m2 = 3.3 kg and length L = 2R = 0.46 m begins at rest above the disk and is dropped on the disk where it begins to spin with the disk. 6) The rod took t = 5.4 s to accelerate to its final angular speed...
A person with mass mp = 79 kg stands on a spinning platform disk with a...
A person with mass mp = 79 kg stands on a spinning platform disk with a radius of R = 1.83 m and mass md = 183 kg. The disk is initially spinning at ω = 1.8 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.61 m from the center). 1) What is the total moment of inertia of the system about the center of the disk when the person stands on...
A person with mass mp = 75 kg stands on a spinning platform disk with a...
A person with mass mp = 75 kg stands on a spinning platform disk with a radius of R = 1.65 m and mass md = 187 kg. The disk is initially spinning at ω = 1.4 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.55 m from the center). 1) What is the total moment of inertia of the system about the center of the disk when the person stands on...
A person with mass mp = 77 kg stands on a spinning platform disk with a...
A person with mass mp = 77 kg stands on a spinning platform disk with a radius of R = 2.22 m and mass md = 195 kg. The disk is initially spinning at ω = 1.9 rad/s. The person then walks 2/3 of the way toward the center of the disk (ending 0.74 m from the center). 1) What is the total moment of inertia of the system about the center of the disk when the person stands on...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT