Question

A uniform meter stick is suspended from a string tied at the 50.00 cm mark. A...

A uniform meter stick is suspended from a string tied at the 50.00 cm mark. A 250.0 g is added to a mass hanger (mass 50.0 g) and a 7.5 grams metal clamp at 20.0 cm mark. Where on the meter stick would you hang a 100.0 gram slotted mass to balance the system?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform meter stick is supported by a knife edge at the 50.00 cm mark and...
A uniform meter stick is supported by a knife edge at the 50.00 cm mark and has masses od 0.20 kg and 0.50 kg hanging from the 20.00 cm and 85.00 cm marks respectively. Where should a third mass of 0.30 kg be hung to keep the stick balanced?
1. A uniform meter stick is supported by a knife edge at the 50.0 cm mark...
1. A uniform meter stick is supported by a knife edge at the 50.0 cm mark and has a masse of 4.44 kg hanging from the 11.80 cm mark. A second mass of 7.04 kg should be hung at the _____ cm mark to keep the stick balanced? 2.
A uniform meter stick is suspended at the 10cm mark mark on the stick. It swings...
A uniform meter stick is suspended at the 10cm mark mark on the stick. It swings as a physical pendulum. The equation for the moment of inertia of a thin rod rotated about an axis through the center is 1/12 ML^2. a) What is the rotational inertia in terms of M? b) What is the period of the pendulum?
A meter stick balances horizontally on a knife-edge at the 50.0 cm mark. With two 3.94...
A meter stick balances horizontally on a knife-edge at the 50.0 cm mark. With two 3.94 g coins stacked over the 38.7 cm mark, the stick is found to balance at the 48.7 cm mark. What is the mass of the meter stick?
A particle of mass 0.350 kg is attached to the 100-cm mark of a meter stick...
A particle of mass 0.350 kg is attached to the 100-cm mark of a meter stick of mass 0.125 kg. The meter stick rotates on a frictionless, horizontal table with an angular speed of 6.00 rad/s. (a) Calculate the angular momentum of the system when the stick is pivoted about an axis perpendicular to the table through the 50.0-cm mark. _____ kg · m2/s (b) Calculate the angular momentum of the system when the stick is pivoted about an axis...
A meter stick is found to balance at the 49.7-cm mark when placed on a fulcrum....
A meter stick is found to balance at the 49.7-cm mark when placed on a fulcrum. When a 44.0-gram mass is attached at the 24.5-cm mark, the fulcrum must be moved to the 39.2-cm mark for balance. What is the mass of the meter stick? ________g
A meterstick of uniform density is hung from a string tied at the 23-cm mark. A...
A meterstick of uniform density is hung from a string tied at the 23-cm mark. A 0.40-kg object is hung from the zero end of the meterstick, and the meterstick is balanced horizontally. What is the mass of the meterstick? in kg
A uniform meter rule of mass 60 g is suspended at the 35 cm point by...
A uniform meter rule of mass 60 g is suspended at the 35 cm point by a string, as shown in the diagram.  At which point along the rule (0 cm to 100 cm) should a 100 g mass by hung so that the rule is balanced?
A meter stick is balanced at its 50.0 cm center of mass. Suppose a 20.0 g...
A meter stick is balanced at its 50.0 cm center of mass. Suppose a 20.0 g mass is now placed at the 40.0 cm position. What torque is being applied by this mass? Given data from ques 1, at what position would a 10.0 g mass have to be placed to achieve equilibrium? Suppose the 10.0 g mass is removed, and an unknown mass is now placed at the 90.0 cm position on the meter stick. Find this unknown mass....
A meter stick that has a mass of 90 grams is suspended from the 20 centimeter...
A meter stick that has a mass of 90 grams is suspended from the 20 centimeter mark and set swinging freely. 1.Calculate the rotational inertia. 2. Calculate the period of the resulting small amplitude oscillation.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT