Question

Two masses are connected by a light string passing over a light, frictionless pulley as in...

Two masses are connected by a light string passing over a light, frictionless pulley as in Figure P5.63. The m1 = 4.75 kg object is released from rest at a point 4.00 m above the floor, where the m2 = 3.20 kg object rests. Please define all variables in solving

(a) Determine the speed of each object when the two pass each other.

(b) Determine the speed of each object at the moment the 4.75 kg mass hits the floor.

(c) How much higher does the 3.20 kg mass travel after the 4.75 kg mass hits the floor?

Homework Answers

Answer #1

a) The net change in potential energy will equal the increase in kinetic energy

PE = KE

(m1 - m2)gh = ½(m1 + m2)v²
v² = (m1 - m2)gh / ½(m1 + m2)
v² = (4.75 - 3.20)9.81(4 - 2) / ½(4.75 + 3.20)
v = 7.65 m/s


b) same equation, different height
v² = (4.75 - 3.20)9.81(4 - 0) / ½(4.75 + 3.20)
v = 15.3 m/s

c) the velocity energy found in (b) gets converted to potential.

PE = KE
mgh = ½mv²
gh = ½v²
h = v²/2g
h = 15.3²/2(9.81)
h = 11.93 m extra height if there is enough length in the string to allow it.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two masses are connected by a light string passing over a light, frictionless pulley, as shown...
Two masses are connected by a light string passing over a light, frictionless pulley, as shown in the figure below. The object of mass m1 is released from rest at height h above the table. Use the isolated system model to answer the following. (We assume m1 > m2.) (a) Determine the speed of m2 just as m1 hits the ground. (Use any variable or symbol stated above along with the following as necessary: g.) v = (b) Find the...
Two masses are connected by a massless string, passing over a massless, frictionless pulley as shown...
Two masses are connected by a massless string, passing over a massless, frictionless pulley as shown in the diagram. Mass m1 = 5 kg, and is released from rest at a height h = 4 m above the table. Mass m2 = 3 kg, and starts at rest on the table. Ignore friction and air resistance. Take the system to be the two masses and the earth. What is the potential energy of this system, in Joules? Next, you let...
Two objects (m1 = 5.30 kg and m2 = 2.75 kg) are connected by a light...
Two objects (m1 = 5.30 kg and m2 = 2.75 kg) are connected by a light string passing over a light, frictionless pulley as in the figure below. The 5.30-kg object is released from rest at a point h = 4.00 m above the table. (a) Determine the speed of each object when the two pass each other, (b) Determine the speed of each object at the moment the 5.30-kg object hits the table. (c) How much higher does the...
A mass m1 is connected by a light string that passes over a pulley of mass...
A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2 sliding on a frictionless incline as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm and a moment of inertia of ½ MR2. If m1 is 2.00 kg, m2 is 1.00 kg, M is 4.00 kg, and the angle is 60.0 degrees, then what is the...
A mass m1 is connected by a light string that passes over a pulley of mass...
A mass m1 is connected by a light string that passes over a pulley of mass M to a mass m2 sliding on a frictionless horizontal surface as shown in the figure. There is no slippage between the string and the pulley. The pulley has a radius of 25.0 cm and a moment of inertia of ½ MR2. If m1 is 1.00 kg, m2 is 2.00 kg, and M is 4.00 kg, then what is the tension in the string...
Two blocks are connected by a light string passing over a pulley. The inclined surfaces are...
Two blocks are connected by a light string passing over a pulley. The inclined surfaces are frictionless, and the effects of the pulley can be ignored. The value of m1 = m2 = 1.0 kg and θ2 = 41.6 o. If the blocks accelerate to the right with acceleration a = 0.250 m/s2, what is the value of θ1?
Two masses are connected by a massless string and a frictionless pulley. The masses of the...
Two masses are connected by a massless string and a frictionless pulley. The masses of the blocks are; m1=500 g and m2= 150g. The coefficiant of friction between m1 and the surface is 0.25. (a) What is the acceleration of the masses? (b) What is the tension in the string?
Two objects are connected by a light string that passes over a frictionless pulley as shown...
Two objects are connected by a light string that passes over a frictionless pulley as shown in the figure below. Assume the incline is frictionless and take m1 = 2.00 kg, m2 = 7.90 kg, and ? = 55.5
Question 1 Part a) Two objects are connected by a light string passing over a light,...
Question 1 Part a) Two objects are connected by a light string passing over a light, frictionless pulley as shown in the figure below. The object of mass m1 = 6.40 kg is released from rest at a height h = 3.20 m above the table. Find the maximum height above the table to which the 3.00–kg object rises. Part b)A smooth circular hoop with a radius of 0.900 m is placed flat on the floor. A 0.375-kg particle slides...
Two objects are connected to a rope, and the rope is hung over a pulley connected...
Two objects are connected to a rope, and the rope is hung over a pulley connected to the ceiling, as shown in the figure below. Two objects, labeled m1 and m2, are connected to a rope which is hung over a pulley connected to the ceiling. The pulley is of mass M and radius R. An object labeled m1 hangs suspended off the surface on the left side of the pulley. An object m2 is on the right side of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT