Question

9. A 1 nF parallel plate capacitor has plates with a charge of 1μC and -1μC....

9. A 1 nF parallel plate capacitor has plates with a charge of 1μC and -1μC. A particle with a charge of -4μC and a mass of 2x10-16 kg is fired from the positive plate toward the negative plate with an initial speed of 2x106 m/s. Does the particle reach the negative plate? What fraction of the distance does it cover between the plates before it turns around? ans(a=No,b=1/10)

Homework Answers

Answer #1

C = Capacitance = 1 x 10-9 F

Q = charge = 1 x 10-6 C

V = potential difference = Q/C = 1 x 10-6 /(1 x 10-9 ) = 1000 volts

To reach the opposite plate , the change in electric potential energy must be

U = QV = 1 x 10-6 (1000) = 0.001 J

kinetic energy is given as

KE = (0.5) m v2 = (0.5) (2 x 10-16) (2 x 106)2 = 0.0004 J

since KE < U

hence particle does not reach negative plate

let the distance between the plates = d

distance at which particle returns = x

E = electric field = 1000/d

U' = actual change in potential energy = QE x = 1000 Qx/d

using conservation of energy

U' = KE

1000 Qx/d = 0.0004

1000 (1 x 10-6) (x/d ) = 0.0004

x/d = 0.4

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two parallel plates are charged such that there is a 400V potential difference between them. A...
Two parallel plates are charged such that there is a 400V potential difference between them. A proton is fired from a point midway between the plates toward the positive plate. The protons initial speed is 1.5 × 105 m/s. a) Show that this speed is insufficient for the proton to reach the positive plate. b) What is the proton’s speed as it collides with the negative plate? Possibly useful information: mass of a proton = 1.67 × 10−27 kg, charge...
Two 2.0-cm-diameter-disks spaced 2.0 mm apart form a parallel-plate capacitor. The plates have charge ±  8.8nC. What...
Two 2.0-cm-diameter-disks spaced 2.0 mm apart form a parallel-plate capacitor. The plates have charge ±  8.8nC. What is the voltage across the capacitor? deltaVc =_______________ Dont forget unit An electron is launched from the negative plate. It strikes the positive plate at a speed of 5.5×107 m/s . What was the electron's speed as it left the negative plate? vinitial=_____________________Dont forget unit
1. Two charges are placed between the plates of a parallel plate capacitor. One charge is...
1. Two charges are placed between the plates of a parallel plate capacitor. One charge is +q1 and the other is q2 = +4.66mC (microC). The charge per unit area on each plate has a magnitude of sigma = 1.27×10-4C/m2. The force on q1 due to q2 equals the force on q1 due to the electric field of the parallel plate capacitor. What is the distance r between the two charges? 2. Two identical small insulating balls are suspended by...
A 27.5 nF air-filled parallel plate capacitor is connected in series with a 1.75 kΩ resistor...
A 27.5 nF air-filled parallel plate capacitor is connected in series with a 1.75 kΩ resistor and a battery of emf 36.0 V. (a) Determine the final charge on the capacitor. C (b) Once the capacitor is fully charged and there is no current in the circuit, a sheet of plastic with a dielectric constant of 2.80 is introduced in the gap between the plates of the capacitor, completely filling the gap. If the area of each plate is 0.275...
1)A parallel plate capacitor (denoted as Capacitor 1) has a plate area A1 and a separation...
1)A parallel plate capacitor (denoted as Capacitor 1) has a plate area A1 and a separation distance d1. It is filled with a dielectric made of mylar (κ=3.1). With these conditions, it has a capacitance C1. A second parallel plate capacitor (denoted as Capacitor 2) has the same plate area as the first capacitor (A1 = A2) but the separation distance is twice as large (d1 = ½ d2). The second capacitor is filled with the same dielectric (mylar) and...
A parallel plate air capacitor has a capacitance of 25 uF. The charge on each plate...
A parallel plate air capacitor has a capacitance of 25 uF. The charge on each plate is Q 50 uF. There are no batteries connected to the capacitor. How much work is required to double the separation distance between the plates?
1) What is the capacitance of an empty parallel-plate capacitor with metal plates that each have...
1) What is the capacitance of an empty parallel-plate capacitor with metal plates that each have an area of 1.00 m 2, separated by 1.00 mm? We assume an answer in nF. 2) How much charge is stored in this capacitor if a voltage of 3.00 × 10 3 V is applied to it? We assume an answer in μ C.
1 A parallel plate capacitor is connected to a battery and becomes fully charged the capacitor...
1 A parallel plate capacitor is connected to a battery and becomes fully charged the capacitor is then disconnected and the separation between the plates is halved in such a way that so charge leaks off As the plate separation is being halved which of the following parameters remains constant? An air filled k=1 ideal parallel plate capacitor has a capacitance of C. If the area of the plates is doubled insert a dielectric material k=2 and the distance between...
The plates of a parallel plate capacitor are separated by a distance of 4mm. Each plate...
The plates of a parallel plate capacitor are separated by a distance of 4mm. Each plate has an area of 6cm2. The current that charges the capacitor has a constant value of 1.5mA. At t=0s the charge on the capacitor vanishes. i) Determine the charge and the potential on the capacitor after 6ms. ii) Determine the rate of change of the electric field ∆E/∆t iii) Determine the total displacement current .
A parallel plate capacitor consists of two square plates, each 2 cm on a side, with...
A parallel plate capacitor consists of two square plates, each 2 cm on a side, with a separation of 2 mm. The magnitude of the charge on each plate is 4 nC. An electron is released from rest at the negative plate and accelerates towards the positive plate. What is the magnitude of its velocity when it reaches the positive plate?