Question

Suppose 1300 J of heat are added to 4.3 mol of argon gas at a constant...

Suppose 1300 J of heat are added to 4.3 mol of argon gas at a constant pressure of 120 kPa. (Assume that the argon can be treated as an ideal monatomic gas.) (a) Find the change in internal energy. J (b) Find the change in temperature for this gas. K (c) Calculate the change in volume of the gas.

Homework Answers

Answer #1

Added heat = 1300 J
Number of moles of argon, n = 4.3
Pressure P = 120 kPa = 120 * 10 ^ 3 Pa

we know Q = n*Cp*dT ------ ( 1)
where Cp= specific heat at constant pressure = ( 5/ 2) R
R = gas constant = 8.314 J / mol K
Cp = 20.785 J / mol K

from eq ( 1) , dT = Q / n*Cp
=> dt = 1300/(5/2*8.314*4.3)
= 14.54 K

(a). Change in internal energy dU = n*Cv*dT
where Cv = specific heat at constant volume = ( 3/ 2) R
dU = n*Cv*dT
= 4.3*(3/2*8.314)*14.54
= 780 J

(b). Change in temperature of the gas dT = 14.54 K

(c).Change in volume of ht egas dV = ?
we know at constant pressure P *dV = n*R*dT
from this dV = nR dT / P
= 4.3*8.314*14.54/(120 * 10 ^ 3)
= 4.33*10^-3 m^ 3

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose 1400 J of heat are added to 1.8 mol of argon gas at a constant...
Suppose 1400 J of heat are added to 1.8 mol of argon gas at a constant pressure of 120 kPa. (Assume that the argon can be treated as an ideal monatomic gas.) (a) Find the change in internal energy. J (b) Find the change in temperature for this gas. K (c) Calculate the change in volume of the gas. m3
Suppose 1300J of heat are added to 1.5 mol of argon gas at a constant pressure...
Suppose 1300J of heat are added to 1.5 mol of argon gas at a constant pressure of 120 kPa. (Assume that the argon can be treated as an ideal monatomic gas.) (a) Find the change in internal energy. J (b) Find the change in temperature for this gas. K (c) Calculate the change in volume of the gas. m3
In a constant-volume process, 208 J of energy is transferred by heat to 1.08 mol of...
In a constant-volume process, 208 J of energy is transferred by heat to 1.08 mol of an ideal monatomic gas initially at 294 K. (a) Find the work done on the gas. J (b) Find the increase in internal energy of the gas. J (c) Find its final temperature. K
In a constant-volume process, 215 J of energy is transferred by heat to 1.07 mol of...
In a constant-volume process, 215 J of energy is transferred by heat to 1.07 mol of an ideal monatomic gas initially at 292 K. (a) Find the work done on the gas. 0 J (b) Find the increase in internal energy of the gas. 215 J (c) Find its final temperature. ? K
1. Under constant-volume conditions, 4200 J of heat is added to 1.4 moles of an ideal...
1. Under constant-volume conditions, 4200 J of heat is added to 1.4 moles of an ideal gas. As a result, the temperature of the gas increases by 103 K. How much heat would be required to cause the same temperature change under constant-pressure conditions? Do not assume anything about whether the gas is monatomic, diatomic, etc. 2. A system gains 3080 J of heat at a constant pressure of 1.36 × 105 Pa, and its internal energy increases by 4160...
With the pressure held constant at 250 kPa , 47 mol of a monatomic ideal gas...
With the pressure held constant at 250 kPa , 47 mol of a monatomic ideal gas expands from an initial volume of 0.70 m3 to a final volume of 1.9 m3 . a) How much work was done by the gas during the expansion? b) What were the initial temperature of the gas? c) What were the final temperature of the gas? d) What was the change in the internal energy of the gas? e) How much heat was added...
When 18.5 J was added as heat to a particular ideal gas, the volume of the...
When 18.5 J was added as heat to a particular ideal gas, the volume of the gas changed from 36.8 cm3 to 59.4 cm3 while the pressure remained constant at 0.944 atm. (a) By how much did the internal energy of the gas change? If the quantity of gas present is 1.38 x 10-3 mol, find the molar specific heat of the gas at (b) constant pressure and (c) constant volume.
Under constant pressure, the temperature of 1.70 mol of an ideal monatomic gas is raised 15.5...
Under constant pressure, the temperature of 1.70 mol of an ideal monatomic gas is raised 15.5 K. (a) What is the work W done by the gas? J (b) What is the energy transferred as heat Q? J (c) What is the change ΔEint in the internal energy of the gas? J (d) What is the change ΔK in the average kinetic energy per atom? J
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes a 3-step process as follows:                  (i)         It expands adiabatically from T1 = 588 K to T2 = 389 K                  (ii)        It is compressed at constant pressure until its temperature reaches T3 K                  (iii)       It then returns to its original pressure and temperature by a constant volume process. A). Plot these processes on a PV diagram B). Determine the temperature T3 C)....
The heat capacity at constant volume of a certain amount of a monatomic gas is 53.7...
The heat capacity at constant volume of a certain amount of a monatomic gas is 53.7 J/K. (a) Find the number of moles of the gas. in mol (b) What is the internal energy of the gas at T = 286 K? in kJ (c) What is the heat capacity of the gas at constant pressure? in J/k
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT