Question

A particle of mass m is initially at x = 20 cm with a period of...

A particle of mass m is initially at x = 20 cm with a period of 1.4 s and moving with velocity v0 = +51 cm/s. Write expressions for the following. (Round numerical values in your answers to two decimal places.)
(a) the position x as a function of t
(b) the velocity vx as a function of t
(c) the acceleration ax as a function of t

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle of mass m is initially at x = 28 cm with a period of...
A particle of mass m is initially at x = 28 cm with a period of 1.3 s and moving with velocity v0 = +52 cm/s. Write expressions for the following. (Round numerical values in your answers to two decimal places.) (a) the position x as a function of t x(t) = _____ m (b) the velocity vx as a function of t vx(t) = _____ m/s (c) the acceleration ax as a function of t ax(t) = _____ m/s2
1) The position of a particle is given in cm by x = (4) cos 3πt,...
1) The position of a particle is given in cm by x = (4) cos 3πt, where t is in seconds. (a) Find the maximum speed.    m/s (b) Find the maximum acceleration of the particle. m/s2 2) An object of mass m is suspended from a vertical spring of force constant 1692 N/m. When the object is pulled down 2.51 cm from equilibrium and released from rest, the object oscillates at 5.10 Hz. Write expressions for the acceleration ax...
A particle moves along the x axis. It is initially at the position 0.150 m, moving...
A particle moves along the x axis. It is initially at the position 0.150 m, moving with velocity 0.080 m/s and acceleration -0.340 m/s2. Suppose it moves with constant acceleration for 5.60 s. (c) Find its position (d) Find its velocity at the end of this time interval.
A particle moves along the x axis. It is initially at the position 0.150 m, moving...
A particle moves along the x axis. It is initially at the position 0.150 m, moving with velocity 0.080 m/s and acceleration -0.340 m/s2. Suppose it moves with constant acceleration for 5.60 s. (a) Find the position of the particle after this time. (b) Find its velocity at the end of this time interval. Next, assume it moves with simple harmonic motion for 5.60 s and x = 0 is its equilibrium position. (Assume that the velocity and acceleration is...
A charged particle of mass m=1.242 g and charge q=1.144 μC is moving in the xz-plane...
A charged particle of mass m=1.242 g and charge q=1.144 μC is moving in the xz-plane (unit vectors i and k) under the action of both Earth's gravity g=−g k and the electric field E=−E i, where magnitude E=10.8 kV/m. The particle started at position x0=z0=0 with the initial velocity v0=v0i, the initial speed being v0=0.98 m/s. At some point later in time, the particle is found in a position with the z-coordinate z=-32.8 cm. What is the x-coordinate of...
.The x and y components of the velocity of a particle are: vx = (2 t...
.The x and y components of the velocity of a particle are: vx = (2 t + 4) p / s vy = (8 ⁄ y) p / s Initially, the particle is located at the coordinates x = 1 and y = 0. Determine the position, the magnitude of the velocity and the magnitude of the particle's acceleration when t = 2 s.
The x and y components of the velocity of a particle are Vx=(2t + 4)ft/s &...
The x and y components of the velocity of a particle are Vx=(2t + 4)ft/s & Vy=(8/y)ft/s. Initially, the particle if found at coordinates x=1 and y=0. Determine the position, magnitude of velocity, and magnitude of the acceleration of the particle when t = 2s
A particle of mass m = 1.3 kg and initial velocity v0 = 12.5 m/s, strikes...
A particle of mass m = 1.3 kg and initial velocity v0 = 12.5 m/s, strikes an initially stationary particle of mass M = 10.5 kg. The collision is inelastic. Afterwards, particle m is observed moving at a speed v = 9.5 m/s, at an angle θ = 62° from its initial direction of motion, and particle M is observed moving at a speed V Find V, the final speed of particle M, in m/s. What happens to V if...
A charged particle of mass m=1.116 g and charge q=0.968 μC is moving in the xz-plane...
A charged particle of mass m=1.116 g and charge q=0.968 μC is moving in the xz-plane (unit vectors i and k) under the action of both Earth's gravity g=−g k and the electric field E=−E i, where magnitude E=7.02 kV/m. The particle started at position x0=z0=0 with the initial velocity v0=v0i, the initial speed being v0=0.74 m/s. At some point later in time, the particle is found in a position with the z-coordinate z=-32.8 cm. What is the x-coordinate of...
Kinematics Examples: A) A cat has a time dependent position given by x(t) = 4.50 m...
Kinematics Examples: A) A cat has a time dependent position given by x(t) = 4.50 m + (3.20 m/s^2) t^2 - (1.75 m/s^3) t^3 Find Velocity as function of time? Find acceleration as a function of time? Find the position velocity, and acceleration of the cat at t = 3.00 s? Find average velocity and average acceleration for the 1st 3.00s? Find the position of the cat when it first changes direction? B) A robot starts at X0 = 4.00m...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT