Question

A 4.2 m diameter merry go round is rotating freely with an angular velocity of 1.0...

A 4.2 m diameter merry go round is rotating freely with an angular velocity of 1.0 rad/s. If its total moment of inertia is 1760 kg*m2, find the angular velocity of the merry go round when four people of 60 kg jump onto the edge of the merry go round. Treat the persons as point particles.

Homework Answers

Answer #1

The angular velocity of the merry go round when four people of 60 kg jump onto the edge of the merry go round is 0.869 rad/s.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4.2 m diameter merry-go-round is rotating freely with an angular velocity of 0.60 rad/s . Its total moment of...
A 4.2 m diameter merry-go-round is rotating freely with an angular velocity of 0.60 rad/s . Its total moment of inertia is 1700 kg⋅m2 . Four people standing on the ground, each of mass 66 kg , suddenly step onto the edge of the merry-go-round. 1. What is the angular velocity of the merry-go-round now? 2. What if the people were on it initially and then jumped off in a radial direction (relative to the merry-go-round)?
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely...
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely with an angular speed of 3.0 rad/s. Two people, each having a mass of 60 kg are standing right outside the edge of the merry-go-round. One person radially steps on the edge merry-go-round with negligible speed and the angular speed changes to ?1. A few seconds later, the second person radially steps on the merry-go-round with negligible speed but at distance of 4.0 m...
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely...
A 5.0-m radius playground merry-go-round with a moment of inertia of 2000 kg?m2 is rotating freely with an angular speed of 3.0 rad/s. Two people, each having a mass of 60 kg are standing right outside the edge of the merry-go-round. One person radially steps on the edge merry-go-round with negligible speed and the angular speed changes to ?1. A few seconds later, the second person radially steps on the merry-go-round with negligible speed but at distance of 4.0 m...
A 2.8-m-diameter merry-go-round with rotational inertia 110 kg?m2 is spinning freely at 0.60 rev/s . Four...
A 2.8-m-diameter merry-go-round with rotational inertia 110 kg?m2 is spinning freely at 0.60 rev/s . Four 25-kg children sit suddenly on the edge of the merry-go-round. a.) Find the new angular speed. b.) Determine the total energy lost to friction between the children and the merry-go-round.
A playground merry-go-round (of mass 123 kg and radius 1.90 m) is rotating with an angular...
A playground merry-go-round (of mass 123 kg and radius 1.90 m) is rotating with an angular velocity of 4.42 rad/s. A 23.7 kg child, initially at rest, suddenly jumps on the merry-go-round by grabbing onto its outer edge. How much kinetic energy (in J) is lost in this inelastic collision?
1. A person of mass 75.0 kg stands at the center of a rotating merry-go-round platform...
1. A person of mass 75.0 kg stands at the center of a rotating merry-go-round platform of radius 3.00 m and moment of inertia 826 kg⋅m2. The platform rotates without friction with angular velocity of 0.955 rad/s. The person walks radially to the edge of the platform. You may ignore the size of the person. (a) Calculate the angular velocity when the person reaches the edge of the merry-go-round. (b) Calculate the rotational kinetic energy of the system of platform...
A person of mass 72 kg stands at the center of a rotating merry-go-round platform of...
A person of mass 72 kg stands at the center of a rotating merry-go-round platform of radius 2.7 m and moment of inertia 860 kg?m2 . The platform rotates without friction with angular velocity 0.95 rad/s . The person walks radially to the edge of the platform. Calculate the angular velocity when the person reaches the edge. Calculate the rotational kinetic energy of the system of platform plus person before and after the person's walk
A person of mass 70 kg stands at the center of a rotating merry-go-round platform of...
A person of mass 70 kg stands at the center of a rotating merry-go-round platform of radius 3.2 m and moment of inertia 860 kg⋅m2 . The platform rotates without friction with angular velocity 0.95 rad/s . The person walks radially to the edge of the platform. A. Calculate the angular velocity when the person reaches the edge. B. Calculate the rotational kinetic energy of the system of platform plus person before and after the person's walk.
A playground merry-go-round with a moment of inertia of 300 kg m2 is rotating with no...
A playground merry-go-round with a moment of inertia of 300 kg m2 is rotating with no friction at an angular velocity of 2.3 rad/s. Sharon, whose mass is 70 kg, runs and jumps on the merry-go-round in such a way that after she jumps on it the merry-go round stops. How fast, in m/s was she running if the merry-go-round had a radius of 2.5 m? Enter only the numerical value of your answer to 2 significant figures. Do not...
A 220 kg merry-go-round that is 2.1 meters in radius is rotating with a 24 kg...
A 220 kg merry-go-round that is 2.1 meters in radius is rotating with a 24 kg girl standing 1 meter from the center. It is rotating with a period of 3.2 seconds. 1. What is the angular velocity of the merry-go-round? 2. What is the total moment of inertia of the merry-go-round and girl? 3. What is the total angular momentum of the merry-go-round and girl? A 220 kg merry-go-round that is 2.1 meters in radius is rotating with a...