Question

A source placed at x = 0 produces the following wave: y=ym*sin2π(8t−x/3), where t is in...

A source placed at x = 0 produces the following wave: y=ym*sin2π(8t−x/3), where t is in seconds and x is in meters . A second identical source is placed on the x-axis at a point that will cause the two waves produced to interfere destructively. What is the least possible distance between the two sources?

Homework Answers

Answer #1

Dear student,
Find this solution.if any issue with that don't forget to write in comment section.I will rectify them as soon as possible.
If you find the solution helpful and kindly RATE THE ANSWER it would be appreciated.
Your rating is important to me.
Thanks for asking..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wave in a string has a wave function given by: y (x, t) = (0.0200m)...
A wave in a string has a wave function given by: y (x, t) = (0.0200m) sin [(6.35 m) x + (2.63 s) t] where t is expressed in seconds and x in meters. Determine: a) the amplitude of the wave b) the frequency of the wave c) distance of wave of the wave d) the speed of the wave
a. Find the speed of a wave on a string given by y(x,t)=(3.00 mm) sin [(7.0/s)t...
a. Find the speed of a wave on a string given by y(x,t)=(3.00 mm) sin [(7.0/s)t -(4.00/m)x) ] . b. What can you do to increase the speed of the wave? c. What is the vertical speed of the string at a point located 0.2m away from the origin at time 0.3s? d. A wave given by y(x,t)=(3.00 mm) sin [(7.0/s)t -(4.00/m)x+pi/2 ] is created on another identical string. What is different and what is the same in these two...
K 2. Point Source Interference Pattern Consider a two-dimensional x-y space in which there are two...
K 2. Point Source Interference Pattern Consider a two-dimensional x-y space in which there are two identical and synchronized point sources located at y=±D/2 emitting waves of wavelength λ. The sources are said to constructively interfere at any location if the phase difference between waves received from the two sources at that location differ by an integral multiple of 2π. Equivalently, the distances from the location to the two sources differ by an integral number of wavelengths. Derive the complete...
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where...
A standing wave on a string fixed at both ends is described by y(x,t)=2 sin((π/3)x)cos((π/3)t), where x and y are given in cm and time t is given in s. Answer the following questions a) Find the two simplest travelling waves which form the above standing wave b) Find the amplitude, wave number, frequency, period and speed of each wave(Include unit in the answer) c) When the length of the string is 12 cm, calculate the distance between the nodes...
A sinusoidal wave is described by y(x,t)= (0.45m )sin (0.30 x – 50t+π/6), where ‘x’ and...
A sinusoidal wave is described by y(x,t)= (0.45m )sin (0.30 x – 50t+π/6), where ‘x’ and ‘y’ are in meters and ‘t’ is in seconds.(a). Find the transverse velocity and transverse acceleration expression. (b).Determine the amplitude , angular frequency, angular wave number, wavelength, wave speed and direction of the motion.?
A transverse wave on a cable is described by the function y(x,t)=2.3cos(4.7x+12t−π/2), where distance is measured...
A transverse wave on a cable is described by the function y(x,t)=2.3cos(4.7x+12t−π/2), where distance is measured in meters and time in seconds. If the tension in the cable is 25 N, what is the linear mass density of the cable?
A wave on a string can be described by the following equation: y(x,t)=9.2cos(4.2x+0.85t) where y and...
A wave on a string can be described by the following equation: y(x,t)=9.2cos(4.2x+0.85t) where y and x are in meters and t is in seconds. 1) What is the speed of the wave? 0.79 m/s 1.27 m/s 0.2 m/s 4.94 m/s 0.03 m/s 2) What is its wavelength? 0.2 m 0.67 m 7.39 m 5.34 m 1.5 m 3) What is the acceleration of the string in the y direction at x=1.7 m and t=7 seconds? 3.91 m/s2 7.97 m/s2...
The wave functions y1(x, t) = (0.150 m)sin(3.00x − 1.50t) and y2(x, t) = (0.250 m)cos(6.00x...
The wave functions y1(x, t) = (0.150 m)sin(3.00x − 1.50t) and y2(x, t) = (0.250 m)cos(6.00x − 3.00t) describe two waves superimposed on a string, with x and y in meters and t in seconds. What is the displacement y of the resultant wave at the following. (Include the sign of the value in your answers.) (a)     x = 0.700 m and t = 0 m (b)     x = 1.15 m and t = 1.15 s m (c)     x =...
Two waves traveling in opposite directions on a stretched rope interfere to give the standing wave...
Two waves traveling in opposite directions on a stretched rope interfere to give the standing wave described by the following wave function: y(x,t) = 4 sin⁡(2πx) cos⁡(120πt), where, y is in centimetres, x is in meters, and t is in seconds. The rope is two meters long, L = 2 m, and is fixed at both ends. In terms of the oscillation period, T, at which of the following times would all elements on the string have a zero vertical...
A transverse harmonic wave travels on a rope according to the following expression: y(x,t) = 0.14sin(2.7x...
A transverse harmonic wave travels on a rope according to the following expression: y(x,t) = 0.14sin(2.7x + 17.5t) The mass density of the rope is ? = 0.147 kg/m. x and y are measured in meters and t in seconds. What is the amplitude of the wave? What is the frequency of oscillation of the wave? What is the wavelength of the wave? What is the tension in the rope? At x = 3.1 m and t = 0.43 s,...