Question

a) Two narrow, parallel slits, separated by a distance of 0.25 mm, are illuminated by a...

a) Two narrow, parallel slits, separated by a distance of 0.25 mm, are illuminated by a light source whose wavelength is 480 nm. Calculate the angular separation of the central bright maximum and the first-order bright fringe.

b) Two narrow, parallel slits, separated by a distance of 0.25 mm, are illuminated by a light source whose wavelength is 480 nm.

(a) Calculate the angular separation of the central bright maximum and the first-order bright fringe.

(b) Calculate the linear separation of the central maximum and the first-order bright fringe, if the distance between the screen and the double-slit is 75 cm. .

Homework Answers

Answer #1

The pattern obtained is an interference pattern. Given the distance between the slits d = 0.25mm = 0.25 x 10-3m and the wavelength of light = 480nm = 480 x 10-9m.

a) The angular seperation between central maxima and nth bright fringe is,

For first order, n = 1. Therefore,

So the angular separation of the central bright maximum and the first-order bright fringe is .

b) Given the distance between the slits and the screen is D = 75cm =0.75m. The position of nth bright fringe is given by,

For first order, n = 1. Therefore,

So the linear separation of the central maximum and the first-order bright fringe is 1.44mm.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A pair of narrow, parallel slits separated by 0.300 mm is illuminated by green light (?...
A pair of narrow, parallel slits separated by 0.300 mm is illuminated by green light (? = 546.1 nm). The interference pattern is observed on a screen 1.10 m away from the plane of the parallel slits. (a) Calculate the distance from the central maximum to the first bright region on either side of the central maximum. ________________mm (b) Calculate the distance between the first and second dark bands in the interference pattern. ________________mm
A pair of narrow and parallel slits is separated by a distance (d) of 0.750mm and...
A pair of narrow and parallel slits is separated by a distance (d) of 0.750mm and are illuminated by a green light with a wavelength of 562nm. The interference pattern is seen on a viewing screen that is L = 1.80 m away from the plane of the parallel slits. a) Find the distance from the center of the central maximum to the center of the first dark fringe b) calculate the distance from the center of the central maximum...
Two narrow slits separated by 0.05 mm are illuminated with light  = 540 nm. How...
Two narrow slits separated by 0.05 mm are illuminated with light  = 540 nm. How many bands of bright lines are there between the central maximum and the 12-cm position? (The distance between the double slits and the screen is 1 m).
Two narrow slits are illuminated by a laser with a wavelength of 578 nm. The interference...
Two narrow slits are illuminated by a laser with a wavelength of 578 nm. The interference pattern on a screen located x = 4.50 m away shows that the third-order bright fringe is located y = 9.10 cm away from the central bright fringe. Calculate the distance between the two slits. First you have to calculate the angle of the maximum. Then you can use the formula for bright fringes of double slits. Incorrect. Tries 2/20 Previous Tries The screen...
Two narrow slits are illuminated by a laser with a wavelength of 522 nm. The interference...
Two narrow slits are illuminated by a laser with a wavelength of 522 nm. The interference pattern on a screen located x = 4.80 m away shows that the third-order bright fringe is located y = 9.10 cm away from the central bright fringe. Calculate the distance between the two slits. The screen is now moved 0.9 m further away. What is the new distance between the central and the third-order bright fringe?
Two narrow slits are illuminated by a laser with a wavelength of 587 nm. The interference...
Two narrow slits are illuminated by a laser with a wavelength of 587 nm. The interference pattern on a screen located x = 5.00 m away shows that the second-order bright fringe is located y = 9.30 cm away from the central bright fringe. A.) Calculate the distance between the two slits. B.) The screen is now moved 2.5 m further away. What is the new distance between the central and the second-order bright fringe?
A two-slit arrangement with 60.3 mm separation between the slits is illuminated with 491.0 nm coherent...
A two-slit arrangement with 60.3 mm separation between the slits is illuminated with 491.0 nm coherent light. If a viewing screen is located 4 m from the slits, find the distance from the first dark fringe on one side of the central maximum to the second dark fringe on the other side.
Two narrow slits are illuminated by a laser with a wavelength of 543 nm. The interference...
Two narrow slits are illuminated by a laser with a wavelength of 543 nm. The interference pattern on a screen located x = 4.50 m away shows that the third-order bright fringe is located y = 7.20 cm away from the central bright fringe. Calculate the distance between the two slits. ("1st order" means m=1, "second order" means m=2, etc).
A pair of slits, separated by 0.1 mm, is illuminated by light having a wavelength of...
A pair of slits, separated by 0.1 mm, is illuminated by light having a wavelength of 500 nm. An interference pattern is observed on a screen 1.20 m from the slits. (a) Draw the diagram of the double slits and determine how far apart will adjacent bright interference fringes on the screen? (b) What are the angles of the first and second order fringes with respect to the zeroth order fringe? (c) Determine the position of the first and second...
Two slits spaced 0.130 mm apart are placed 90.0 cm from a screen and illuminated by...
Two slits spaced 0.130 mm apart are placed 90.0 cm from a screen and illuminated by coherent light with wavelength 550 nm. The intensity at the center of the central maximum is 4.30 × 10-6 W/m2. What is the distance on the screen between the third bright fringe and the sixth dark fringe? What is the intensity at a point midway between the center of the central maximum and the first minimum?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT