Question

1.A particle of charge ​q​ and mass ​m​ experiences a uniform electric field ​E​. If the...

1.A particle of charge ​q​ and mass ​m​ experiences a uniform electric field ​E​. If the particle starts at rest, find

(a) its speed after it has travelled a distance ​d​ and
(b) the magnitude of the electric potential difference through which it passed

2. Find the electric field of a uniformly charged solid sphere both inside and outside the sphere if the total charge is ​Q​0​ and the radius of the sphere is ​d​.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a solid uniformly charged copper sphere with charge Q and radius R. Showing all Steps,...
Consider a solid uniformly charged copper sphere with charge Q and radius R. Showing all Steps, (a) Calculate the potential of the spherical charge inside and outside of the sphere. (b) Calculate the electric field of the spherical charge from the potential in part (a) for the inside and outside regions.
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge...
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge of q = 12µC. it is enclosed by a thin conducting concentric spherical shell of inner radius R, the net charge on the shell is zero. a) find the magnitude of the electrical field E1  inside the sphere (r < R) at the distance r1 = 3.0 cm from the center. b) find the magnitude of the electric field E2 outside the shell at the...
A thin, uniformly charged spherical shell has a potential of 727 V on its surface. Outside...
A thin, uniformly charged spherical shell has a potential of 727 V on its surface. Outside the sphere, at a radial distance of 20.0 cm from this surface, the potential is 403 V. (1) Calculate the radius of the sphere. (2) Determine the total charge on the sphere (3) What is the electric potential inside the sphere at a radius of 3.0 cm (4) Calculate the magnitude of the electric field at the surface of the sphere. (5) If an...
A proton is acted on by an uniform electric field of magnitude 193 N/C pointing in...
A proton is acted on by an uniform electric field of magnitude 193 N/C pointing in the negative z direction. The particle is initially at rest. (a) In what direction will the charge move? (b) Determine the work done by the electric field when the particle has moved through a distance of 2.65 cm from its initial position. ____J (c) Determine the change in electric potential energy of the charged particle. _____J (d) Determine the speed of the charged particle.
A proton is acted on by an uniform electric field of magnitude 313 N/C pointing in...
A proton is acted on by an uniform electric field of magnitude 313 N/C pointing in the negative y direction. The particle is initially at rest. (a) In what direction will the charge move? (b) Determine the work done by the electric field when the particle has moved through a distance of 2.45 cm from its initial position. J (c) Determine the change in electric potential energy of the charged particle. J (d) Determine the speed of the charged particle....
1. A conducting slab with thickness, l, is placed un an uniform electric field E such...
1. A conducting slab with thickness, l, is placed un an uniform electric field E such that the field is perpendicular to the faces of hte conductor as drawn. The field in the conductror is naturally zero. What is the magnitude of the work required to move a particle with charge +q form the left surface of the slab to the right surface? a. 0 b. qE c. qEl d. q^2E e. q^2El 2. The electric potential energy of a...
the electric field produced by a uniform sphere of charge (both inside and outside the sphere)....
the electric field produced by a uniform sphere of charge (both inside and outside the sphere). We inherently assumed the sphere was made of a dielectric material. How would the electric field be different if the sphere were a conductor with the same total net charge (q)? Your answer does not need to involve an equation. Instead, provide a concise explanation for why the electric field would be different or the same (both inside and outside the sphere).
5. PROBLEM: GUASS'S LAW I Use Guass's law to obtain the electric field for each of...
5. PROBLEM: GUASS'S LAW I Use Guass's law to obtain the electric field for each of the following: a) A point charge q. b) An insulatin sphere of radius R and charge Q distributed uniformly throughout the volume. Here you want to find the electric field both inside and outside the sphere. Sketch the field strength as a function of distance from the center of the sphere.
A proton is acted on by an uniform electric field of magnitude 443 N/C pointing in...
A proton is acted on by an uniform electric field of magnitude 443 N/C pointing in the negative x direction. The particle is initially at rest. (a) In what direction will the charge move? ---Select--- +x direction ?x direction +y direction ?y direction +z direction ?z direction (b) Determine the work done by the electric field when the particle has moved through a distance of 3.15 cm from its initial position. J (c) Determine the change in electric potential energy...
A point charge q is moving in uniform electric field (E0 in the z-direction) and uniform...
A point charge q is moving in uniform electric field (E0 in the z-direction) and uniform magnetic field (B0 field in the x-direction). (i) What is the force acting on the charge particle? Find equations of motion for the charge particle. (ii) Assume that initially the charge is placed the origin and has initial velocity (E0/2B0) in the y-direction. Determine position and velocity of the charge particle as a function of time. (iii) Find the trajectory of the particle and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT