Question

quantum physics: Considera particle in the ground state of an infinite square well where the left...

quantum physics:
Considera particle in the ground state of an infinite square well where the left half of the well rises at a linear rate to a potential of V0in a time t, and then falls back at a linear rate in a time t. What is the probability that the particle is now in the first excited state?

Homework Answers

Answer #1

Upvote, if the answer was helpful. Thanks and have a nice & safe day.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Considera particle in the ground state of an infinite square well where the left half of...
Considera particle in the ground state of an infinite square well where the left half of the well rises at a linear rate to a potential of V0in a time τ, and then falls back at a linear rate in a time τ. What is the probability that the particle is now in the first excited state?
A particle is in the ground state of an infinite square well. The potential wall at...
A particle is in the ground state of an infinite square well. The potential wall at x = L suddenly (i.e., instantaneously) moves to x = 3L. such that the well is now three times its original size. (a) Let t = 0 be at the instant of the sudden change in the potential well. What is ψ(x, 0)? (b) If you measure the energy of the particle in the new well, what are the possible energies? (c) Estimate the...
A particle in an infinite well is in the ground state with an energy of 1.92...
A particle in an infinite well is in the ground state with an energy of 1.92 eV. How much energy must be added to the particle to reach the fifth excited state (n = 6)? The seventh excited state (n = 8)? fifth excited state     eV seventh excited state      eV
An electron is in the 4th excited state within a bound infinite square well with a...
An electron is in the 4th excited state within a bound infinite square well with a finite length. It transitions to the lower state n = 3, emitting a photon of wavelength 368.0 nm. a) Determine the width of the well. b) Sketch the probability distribution of finding the electron in the n = 4 state, indicating where the most likely positions the particle will be found. What is the likelihood of finding the particle within the first half of...
An infinite square well has a particle of mass m that is in a state |├...
An infinite square well has a particle of mass m that is in a state |├ ψ(0)〉=A(├ |1〉-├ |2〉+├ i|3〉) at time t=0. The kets ├ |1〉,├ |2〉, and ├ |3〉 correspond to the first three energy eigenstates of the infinite square well. Find the normalized state vector. What are the energy measurement outcomes and their probabilities? What is the energy expectation value? What is the normalized state vector at time t? What are the energy measurement outcomes and their...
For the infinite square-well potential, find the probability that a particle in its third excited state...
For the infinite square-well potential, find the probability that a particle in its third excited state is in each third of the one-dimensional box: (0 ≤ x ≤ L/3) (L/3 ≤ x ≤ 2L/3) (2L/3 ≤ x ≤ L)
For the infinite square-well potential, find the probability that a particle in its fourth excited state...
For the infinite square-well potential, find the probability that a particle in its fourth excited state is in each third of the one-dimensional box: a)  (0 ≤ x ≤ L/3) b) (L/3 ≤ x ≤ 2L/3) c) (2L/3 ≤ x ≤ L)
Quantum mechanics: Consider a particle initially in the ground state of the one-dimensional simple harmonic oscillator....
Quantum mechanics: Consider a particle initially in the ground state of the one-dimensional simple harmonic oscillator. A uniform electric field is abruptly turned on for a time t and then abruptly turned off again. What is the probability of transition to the first excited state?
Quantum mechanics problem: Consider a particle initially in the ground state of the one-dimensional simple harmonic...
Quantum mechanics problem: Consider a particle initially in the ground state of the one-dimensional simple harmonic oscillator. A uniform electric field is abruptly turned on for a time t and then abruptly turned off again. What is the probability of transition to the first excited state?
Show that the wave function of a particle in the infinite square well of width a...
Show that the wave function of a particle in the infinite square well of width a returns to its original form after a quantum revival time T = 4ma^2/π(hbar)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT