Question

An object with mass mAmA = 1.6 kgkg , moving with velocity v⃗ A=(4.2iˆ+5.6jˆ−3.0kˆ)m/sv→A=(4.2i^+5.6j^−3.0k^)m/s, collides with...

An object with mass mAmA = 1.6 kgkg , moving with velocity v⃗ A=(4.2iˆ+5.6jˆ−3.0kˆ)m/sv→A=(4.2i^+5.6j^−3.0k^)m/s, collides with another object of mass mBmB = 4.2 kgkg , which is initially at rest. Immediately after the collision, the object with mass mAmA = 1.6 kgkg is observed traveling at velocity v⃗ ′A=(−2.0iˆ+3.0kˆ)m/sv→′A=(−2.0i^+3.0k^)m/s.   Find the velocity of the object with mass mBmB after the collision. Assume no outside force acts on the two masses during the collision.

Enter the xx, yy, and zz components of the velocity separated by commas. Express your answer to two significant figures.

Homework Answers

Answer #1

Given before collision

mA = 1.6 kg ,UA = (4.2iˆ+5.6jˆ−3.0kˆ) m/s   

mB = 4.2 kg , UB = 0 because second body is at rest initially

after collision the body of mass mA  = 1.6 kg is moving with the velocity VA  = (−2.0iˆ+3.0kˆ)m/s

Let VB be final velocity of the second body

Applying conservation of momentum,

mA UA + mBUB = mA VA + mBVB

1.6 (4.2iˆ+5.6jˆ−3.0kˆ) + 0 = 1.6  (−2.0iˆ+3.0kˆ) + 4.2 VB

1.6 (4.2iˆ+5.6jˆ−3.0kˆ +2.0iˆ - 3.0kˆ) = 4.2 VB

1.6 (6.2iˆ+5.6jˆ−6.0kˆ) = 4.2 VB

8 (6.2iˆ+5.6jˆ−6.0kˆ) = 21 VB

VB = 2.36 iˆ + 2.13 jˆ − 2.28 kˆ

The respective velocity components of B alon X, Y and Z axes after collision are 2.36, 2.13, - 2.28

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass mAmAm_A = 1.8 kgkg , moving with velocity v⃗ A=(4.0iˆ+4.4jˆ−1.2kˆ)m/sv→A=(4.0i^+4.4j^−1.2k^)m/s, collides with mass mBmBm_B...
A mass mAmAm_A = 1.8 kgkg , moving with velocity v⃗ A=(4.0iˆ+4.4jˆ−1.2kˆ)m/sv→A=(4.0i^+4.4j^−1.2k^)m/s, collides with mass mBmBm_B = 3.8 kgkg , which is initially at rest. Immediately after the collision, mass mAmAm_A = 1.8 kgkg is observed traveling at velocity v⃗ ′A=(−2.4iˆ+3.0kˆ)m/sv→′A=(−2.4i^+3.0k^)m/s. Find the velocity of mass mBmB after the collision. Assume no outside force acts on the two masses during the collision. Enter the x, y, and z components of the velocity separated by commas. Express your answer to two...
An object A of mass 10 kg with velocity 18 m/s collides with an object B...
An object A of mass 10 kg with velocity 18 m/s collides with an object B of mass 20 kg which is at rest. The two objects undergo a perfectly inelastic collision. What is the velocity of object A after the collision?
A mass M is traveling to the right at 7m/s and collides with another mass 2M...
A mass M is traveling to the right at 7m/s and collides with another mass 2M traveling to the left at 4 m/s. The collision is ELASTIC! Find the two masses velocity after collision and the percentage of energy lost in the collision.
A 100 g object with velocity vector [1, 3] m/s collides with a 120 g object...
A 100 g object with velocity vector [1, 3] m/s collides with a 120 g object having velocity vector [-3, 2] m/s. After the collision the 100 g object is observed to have velocity vector [2,-1] m/s. What is the velocity vector of the 120 g object after the impact?
An object with velocity 1.4 m/s i and mass 0.27 kg collides with an object whose...
An object with velocity 1.4 m/s i and mass 0.27 kg collides with an object whose velocity is -2.5 m/s i and whose mass is 0.12 kg. The motion takes place in one dimension. (a) What are the final velocities of the objects if the collision is elastic? b.) What is the total initial kinetic energy in the collision?
An object of mass 2.90 kg, moving with an initial velocity of 4.90 î m/s, collides...
An object of mass 2.90 kg, moving with an initial velocity of 4.90 î m/s, collides with and sticks to an object of mass 1.91 kg with an initial velocity of -3.97 ĵ m/s. Find the final velocity of the composite object. v with arrow = (____ î + ____ ĵ) m/s
A 4.0 kg object is travelling south at a velocity of 2.8 m/s when it collides...
A 4.0 kg object is travelling south at a velocity of 2.8 m/s when it collides with a 6.0 kg object travelling east at a velocity of 3.0 m/s. If these two objects stick together upon collision, at what velocity do the combined masses move?
There is object-1 of mass m1=2.84kg moving on +x axis with the velocity of v1=9.62m/s. Object-1...
There is object-1 of mass m1=2.84kg moving on +x axis with the velocity of v1=9.62m/s. Object-1 is explode into two segments of masses m2=1.74 kg and m3=1.10kg. Mass m2 moves in +250 with the velocity of 3.57m/s. a) Find the x and y-components of velocity of mass m3 after collision? (4 points) b) Find the velocity component of x-direction of the center of mass of the two-particle system after collision. Find the velocity component of y-direction of the center of...
There is an object-1 of mass m1=1.84kg moving on +x-axis with the velocity of v1=7.62m/s. Object-1...
There is an object-1 of mass m1=1.84kg moving on +x-axis with the velocity of v1=7.62m/s. Object-1 is explode into two segments of masses m2=0.74 kg and m3=1.10kg. Mass m2 moves in +28 degrees direction on xy plane with the velocity of 1.57m/s. a) Find the x and y-components of velocity of mass m3 after collision? [Hint: you can assume the direction of m3 in any direction on xy plane with velocity components] b) Find the velocity component of x-direction of...
Consider object-1 of mass m1=652gram moving on the +X axis with the velocity of v1=13.5 m/s....
Consider object-1 of mass m1=652gram moving on the +X axis with the velocity of v1=13.5 m/s. Object-1 collide with stationary object-2 of mass m2=846gram on the X-axis. After collision, both objects are moving X-axis. a) Consider the collision is inelastic, and two objects combined into one object after the collision. Find the velocity of the combined object after collision? Consider the collision remains about 1.82ms. find the impulse acts on object-1 during the collision . Find the energy lost due...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT