Question

A hard ball (1.0 kg) is moving 5 m/s and collides with an identical ball at...

A hard ball (1.0 kg) is moving 5 m/s and collides with an identical ball at rest. The collision istotally elastic, and in the center‐of‐mass frame the balls each deflect by 45 degrees. Find the velocities after the collision in the lab frame.

Homework Answers

Answer #1

let m1 = m2 = m

let v1 and v2 are velocities of the two objects after the collision.

now apply conservation of momentum

0 = m1*v1*sin(45) - m2*v2*sin(45)

m2*v2*sin(45) = m1*v1*sin(45)

==> v1 = v2 (since m1 = m2)

now apply conservation of momentum in x-direction.

m1*u1 = m1*v1*cos(45) + m2*v2*cos(45)

u1 = v1*cos(45) + v2*cos(45)

5 = v1*cos(45) + v1*cos(45)

5 = 2*v1*cos(45)

v1 = 2.5/cos(45)

v1 = 2.5*sqrt(2)

= 3.54 m/s

so, v2 = 3.54 m/s

so, after the collsions both bodies move with velocities 3.54 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides...
A ball with mass M = 5 kg is moving with speed V=10 m/s and collides with another ball with mass m = 2.5 kg which is initially stationary. There is no other force such as gravity acting on the two balls. After the collision, both balls move at angle θ=30 degrees relative to initial direction of motion of the ball with mass M = 5 kg. a) What are the speeds of the two balls after the collision? b)...
A ball of mass 2 kg is moving with a velocity of 12 m/s collides with...
A ball of mass 2 kg is moving with a velocity of 12 m/s collides with a stationary ball of mass 6 kg and comes to rest. calculate the velocity of the 6 kg ball after the collision. (both balls are elastic)
A .06 kg tennis ball, moving at 2.50 m/s collides with a .09 kg ball moving...
A .06 kg tennis ball, moving at 2.50 m/s collides with a .09 kg ball moving away from it at 1.15 m/s. Assuming a perfectly elastic collision, what are the speeds and directions of the balls after the collision? Please explain each step or why you do what you do!
   A ball of mass m1=0.250 kg and velocity v1=5.00 m/s [E] collides head-on with a...
   A ball of mass m1=0.250 kg and velocity v1=5.00 m/s [E] collides head-on with a ball of mass m2=0.800 kg that is initially at rest. No external forces act on the balls. a. Show what is conserved through the appropriate formula if the collision is elastic. b. What are the velocities of the balls after the collision?
A 55 kg hard sphere moving horizontally at 18 m/s due east collides head-on with a...
A 55 kg hard sphere moving horizontally at 18 m/s due east collides head-on with a 65 kg hard sphere moving horizontally at 25 m/s due west. Assuming that the collision is one-dimensional elastic collision determine the following. What are the final velocities of each sphere after the collision?
A 4.80-kg ball, moving to the right at a velocity of +1.70 m/s on a frictionless...
A 4.80-kg ball, moving to the right at a velocity of +1.70 m/s on a frictionless table, collides head-on with a stationary 7.75-kg ball. Find the final velocities of the balls if the collision meet the following conditions. (a) elastic 4.8-kg ball =_________ m/s 7.75-kg ball =_________ m/s (b) completely inelastic _________m/s
A 1.10-kg ball, moving to the right at a velocity of +1.34 m/s on a frictionless...
A 1.10-kg ball, moving to the right at a velocity of +1.34 m/s on a frictionless table, collides head-on with a stationary 6.90-kg ball. Find the final velocities of (a) the 1.10-kg ball and of (b) the 6.90-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1.40-kg ball, moving to the right at a velocity of +2.87 m/s on a frictionless...
A 1.40-kg ball, moving to the right at a velocity of +2.87 m/s on a frictionless table, collides head-on with a stationary 6.70-kg ball. Find the final velocities of (a) the 1.40-kg ball and of (b) the 6.70-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1.70-kg ball, moving to the right at a velocity of +1.51 m/s on a frictionless...
A 1.70-kg ball, moving to the right at a velocity of +1.51 m/s on a frictionless table, collides head-on with a stationary 8.10-kg ball. Find the final velocities of (a) the 1.70-kg ball and of (b) the 8.10-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 4.30-kg ball, moving to the right at a velocity of +3.01 m/s on a frictionless...
A 4.30-kg ball, moving to the right at a velocity of +3.01 m/s on a frictionless table, collides head-on with a stationary 8.50-kg ball. Find the final velocities of (a) the 4.30-kg ball and of (b) the 8.50-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT