Question

A uniform 0.90 T magnetic field is directed an an angle of 30 degrees to the...

A uniform 0.90 T magnetic field is directed an an angle of 30 degrees to the face of a circular loop of wire. The magnetic field is reduced to zero in a time of 45 ms. The loop of wire has a resistance of 0.5 ohms and a radius of 3.6 cm. Determine the average induced current in the loop of wire.

a. 81 mA

b. 0.13 A

c. 0.76 A

d. 1.4 A

e. 2.5 A

Homework Answers

Answer #1

The average induced emf through the loop is given by,

Here, is flux through the circular loop and is given by,

is the angle between the normal to the loop and the magnetic field.

Thus, flux is,

Thus induced emf would be,

now average induced current would be,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A square loop of wire is held in a uniform 0.35 T magnetic field directed perpendicular...
A square loop of wire is held in a uniform 0.35 T magnetic field directed perpendicular to the plane of the loop. The length of each side of the square is decreasing at a constant rate of 4.0 cm/s. What emf is induced in the loop when the length is 9.2 cm?
A circular loop of wire is perpendicular to a 0.16 T uniform magnetic field. The magnetic...
A circular loop of wire is perpendicular to a 0.16 T uniform magnetic field. The magnetic flux through the loop is 24 mWb. What is the radius of the loop?
A circular loop of radius 11.9 cm is placed in a uniform magnetic field. (a) If...
A circular loop of radius 11.9 cm is placed in a uniform magnetic field. (a) If the field is directed perpendicular to the plane of the loop and the magnetic flux through the loop is 7.40 ✕ 10−3 T · m2, what is the strength of the magnetic field? T (b) If the magnetic field is directed parallel to the plane of the loop, what is the magnetic flux through the loop? T · m2
A wire loop with an area of 2.2×10−2 m2 is in a magnetic field of 0.37...
A wire loop with an area of 2.2×10−2 m2 is in a magnetic field of 0.37 T directed at a angle 30∘ to the plane of the loop. If the field drops to zero in 50 ms , what is the average induced emf in the loop?
6: A single-turn circular loop of wire rests flat on this page. A magnetic field is...
6: A single-turn circular loop of wire rests flat on this page. A magnetic field is directed perpendicular to this page pointing outwards (towards you). When the magnetic field strength increases from 3.2 T to 6.5 T in 0.026 seconds, a 1 V emf is induced in the coil. a) Calculate the radius of the loop. b) State the direction of the induced current and briefly explain how you arrived at your answer.
A uniform magnetic field is directed into the screen. There are two parallel conducting rails, running...
A uniform magnetic field is directed into the screen. There are two parallel conducting rails, running horizontally, in the field, with a conducting rod on top of the rails. The rails are a distance L apart. The picture shows a force F directed to the right on the rod. The rails are joined at the left by a resistor of resistance R. ​We'll use these values: L = 20 cm; B = 4.0 T; F = 3.2 N; and R...
A circular wire loop of radius rr = 16 cmcm is immersed in a uniform magnetic...
A circular wire loop of radius rr = 16 cmcm is immersed in a uniform magnetic field BB = 0.375 TT with its plane normal to the direction of the field. If the field magnitude then decreases at a constant rate of −1.2×10−2 T/sT/s , at what rate should rr increase so that the induced emf within the loop is zero?
A large uniform magnetic field is depicted above directed into the page with a magnitude of...
A large uniform magnetic field is depicted above directed into the page with a magnitude of 0.20T. A proton is shot into the field with a speed of 5.0x106 m/s and is trapped in a circular orbit. a.   (5) Determine the magnitude of the force on the proton due to this magnetic field. b.   (10) Determine the radius of the proton’s path. c.   (5) Calculate the period of the proton’s orbit. d.   (5) How much work is done by the...
A circular loop in the plane of the paper lies in a 0.75 T magnetic field...
A circular loop in the plane of the paper lies in a 0.75 T magnetic field pointing into the paper. The loop’s diameter is changed from 20.0 cm to 6.0 cm in 0.50 s. Determine the direction of the induced current and justify your answer. Determine the magnitude of the average induced emf. If the coil resistance is 2.5 Ω, what is the average induced current?
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to...
A 37-turn circular coil of radius 4.60 cm and resistance 1.00 Ω is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 4.20 s.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT