Question

One mole of an ideal gas initially at a temperature of Ti = 5.6°C undergoes an...

One mole of an ideal gas initially at a temperature of Ti = 5.6°C undergoes an expansion at a constant pressure of 1.00 atm to nine times its original volume.?

(a) Calculate the new temperature Tf of the gas.

_____ K

(b) Calculate the work done on the gas during the expansion.?

_____kJ

Homework Answers

Answer #1

given

n = 1 mole
Ti = 5.6 C = 5.6 + 273 = 278.6 K
Pi = 1 atm = 1.013*10^5 pa
Vf = 9*Vi

a) at constant temperature V/T = constant

Vi/Ti = Vf/Tf

Tf = Ti*(Vf/Vi)

= Ti*(9*Vi/Vi)

= Ti*9

= 278.6*9

= 2507 K <<<<<<<<-------------------Answer

b) Workdone done by the gas during expansion, W = P*(Vf - Vi)

= P*(9*Vi - Vi)

= 8*P*Vi

= 8*n*R*Ti (since P*V = n*R*T)

= 8*1*8.314*278.6

= 18530 J

= 18.5 kJ <<<<<<<<-------------------Answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
One mole of an ideal gas initially at a temperature of Ti = 7.6°C undergoes an...
One mole of an ideal gas initially at a temperature of Ti = 7.6°C undergoes an expansion at a constant pressure of 1.00 atm to three times its original volume. (a) Calculate the new temperature Tf of the gas. K (b) Calculate the work done on the gas during the expansion. kJ
A sample consisting of 2.5 moles of ideal gas (Cp,m =20.8 J/K) is initially at 3.25...
A sample consisting of 2.5 moles of ideal gas (Cp,m =20.8 J/K) is initially at 3.25 atm and 300 K. It undergoes reversible adiabatic expansion until its pressure reaches 2.5 atm. Calculate the final volume, the final temperature, and the work done.
One mole of ideal gas initially at 300 K is expanded from an initial pressure of...
One mole of ideal gas initially at 300 K is expanded from an initial pressure of 10 atm to a final pressure of 1 atm. Calculate ΔU, q, w, ΔH, and the final temperature T2 for this expansion carried out according to each of the following paths. The heat capacity of an ideal gas is cV=3R/2. 1. A reversible adiabatic expansion.
One mole of an ideal gas initially at temperature T0 reversibly expands from volume V0 to...
One mole of an ideal gas initially at temperature T0 reversibly expands from volume V0 to 2V0, (a) at constant temperature (b) at constant pressure. Calculate the work, the heat, and change in internal energy of the gas in each process.
In this problem, 0.90 mole of a monatomic ideal gas is initially at 285 K and...
In this problem, 0.90 mole of a monatomic ideal gas is initially at 285 K and 1 atm. (a) What is its initial internal energy? _____ kJ (b) Find its final internal energy and the work done by the gas when 420 J of heat are added at constant pressure. final internal energy ________kJ work done by the gas _______kJ (c) Find the same quantities when 420 J of heat are added at constant volume. finale internal energy ________kJ work...
One mole of an ideal gas does 3000 J of work on its surroundings as it...
One mole of an ideal gas does 3000 J of work on its surroundings as it expands isothermally to a final pressure of 1.00 atm and volume of 25.0 L. Determine: a) the initial volume ? b) the temperature of the gas? (Note: 1 atm = 1.01 x 105Pa, universal gas constant R = 8.31 J/mol K, 1 L = 10-3m3)
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes a 3-step process as follows:                  (i)         It expands adiabatically from T1 = 588 K to T2 = 389 K                  (ii)        It is compressed at constant pressure until its temperature reaches T3 K                  (iii)       It then returns to its original pressure and temperature by a constant volume process. A). Plot these processes on a PV diagram B). Determine the temperature T3 C)....
A vessel with a movable piston contains 1.90 mol of an ideal gas with initial pressure...
A vessel with a movable piston contains 1.90 mol of an ideal gas with initial pressure Pi = 2.03 ✕ 105 Pa, initial volume Vi = 1.00 ✕ 10−2 m3, and initial temperature Ti = 128 K. (a) What is the work done on the gas during a constant-pressure compression, after which the final volume of the gas is 2.50 L? J (b) What is the work done on the gas during an isothermal compression, after which the final pressure...
An ideal gas initially at 350 K undergoes an isobaric expansion at 2.50 kPa. The volume...
An ideal gas initially at 350 K undergoes an isobaric expansion at 2.50 kPa. The volume increases from 1.00 m3 to 3.00 m3 and 13.0 kJ is transferred to the gas by heat. (a) What is the change in internal energy of the gas? kJ (b) What is the final temperature of the gas?
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The...
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The cylinder is provided with a frictionless piston, which maintains a constant pressure of 6.4×105Pa on the gas. The gas is cooled until its temperature has decreased to 27∘C. For the gas CV = 11.65 J/mol⋅K, and the ideal gas constant R = 8.314 J/mol⋅K. 1.Find the work done by the gas during this process. 2.What is the change in the internal (thermal) energy of...