Question

One mole of an ideal gas initially at a temperature of
*T*_{i} = 5.6°C undergoes an expansion at a constant
pressure of 1.00 atm to nine times its original volume.?

(a) Calculate the new temperature
*T*_{f} of the gas.

_____ K

(b) Calculate the work done *on* the gas during the
expansion.?

_____kJ

Answer #1

**given**

**n = 1 mole
Ti = 5.6 C = 5.6 + 273 = 278.6 K
Pi = 1 atm = 1.013*10^5 pa
Vf = 9*Vi**

**a) at constant temperature V/T = constant**

**Vi/Ti = Vf/Tf**

**Tf = Ti*(Vf/Vi)**

**= Ti*(9*Vi/Vi)**

**= Ti*9**

**= 278.6*9**

**= 2507 K
<<<<<<<<-------------------Answer**

**b) Workdone done by the gas during expansion, W = P*(Vf
- Vi)**

**= P*(9*Vi - Vi)**

**= 8*P*Vi**

**= 8*n*R*Ti (since P*V = n*R*T)**

**= 8*1*8.314*278.6**

**= 18530 J**

**= 18.5 kJ
<<<<<<<<-------------------Answer**

One mole of an ideal gas initially at a temperature of
Ti = 7.6°C undergoes an expansion at a constant
pressure of 1.00 atm to three times its original volume.
(a) Calculate the new temperature
Tf of the gas.
K
(b) Calculate the work done on the gas during the
expansion.
kJ

A sample consisting of 2.5 moles of ideal gas (Cp,m
=20.8 J/K) is initially at 3.25 atm and 300 K. It undergoes
reversible adiabatic expansion until its pressure reaches 2.5 atm.
Calculate the final volume, the final temperature, and the work
done.

One mole of ideal gas initially at 300 K is expanded from an
initial pressure of 10 atm to a final pressure of 1 atm. Calculate
ΔU, q, w, ΔH, and the final temperature T2 for this expansion
carried out according to each of the following paths. The heat
capacity of an ideal gas is cV=3R/2.
1. A reversible adiabatic expansion.

One mole of an ideal gas initially at temperature T0 reversibly
expands from volume V0 to 2V0,
(a) at constant temperature (b) at constant pressure.
Calculate the work, the heat, and change in internal energy of
the gas in each process.

In this problem, 0.90 mole of a monatomic ideal gas is initially
at 285 K and 1 atm.
(a) What is its initial internal energy?
_____ kJ
(b) Find its final internal energy and the work done by the gas
when 420 J of heat are added at constant pressure.
final internal energy ________kJ
work done by the gas _______kJ
(c) Find the same quantities when 420 J of heat are added at
constant volume.
finale internal energy ________kJ
work...

One mole of an ideal gas does 3000 J of work on its surroundings
as it expands isothermally to a final pressure of 1.00 atm and
volume of 25.0 L. Determine:
a) the initial volume ?
b) the temperature of the gas?
(Note: 1 atm = 1.01 x 105Pa, universal gas constant R
= 8.31 J/mol K, 1 L = 10-3m3)

2.)1.0 mol sample of an ideal monatomic gas originally at a
pressure of 1 atm undergoes a 3-step process as follows:
(i) It expands
adiabatically from T1 = 588 K to T2 = 389 K
(ii) It is compressed at
constant pressure until its temperature reaches T3 K
(iii) It then returns to its
original pressure and temperature by a constant volume process.
A). Plot these processes on a PV diagram
B). Determine the temperature T3
C)....

A vessel with a movable piston contains 1.90 mol of an ideal gas
with initial pressure
Pi = 2.03 ✕ 105 Pa,
initial volume
Vi = 1.00 ✕ 10−2
m3,
and initial temperature
Ti = 128 K.
(a) What is the work done on the gas during a constant-pressure
compression, after which the final volume of the gas is 2.50
L?
J
(b) What is the work done on the gas during an isothermal
compression, after which the final pressure...

An ideal gas initially at 350 K undergoes an isobaric expansion
at 2.50 kPa. The volume increases from 1.00 m3 to 3.00 m3 and 13.0
kJ is transferred to the gas by heat. (a) What is the change in
internal energy of the gas? kJ (b) What is the final temperature of
the gas?

A cylinder contains 1.5 moles of ideal gas, initially at a
temperature of 113 ∘C. The cylinder is provided with a frictionless
piston, which maintains a constant pressure of 6.4×105Pa on the
gas. The gas is cooled until its temperature has decreased to 27∘C.
For the gas CV = 11.65 J/mol⋅K, and the ideal gas
constant R = 8.314 J/mol⋅K.
1.Find the work done by the gas during this process.
2.What is the change in the internal (thermal) energy of...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 18 minutes ago

asked 28 minutes ago

asked 31 minutes ago

asked 43 minutes ago

asked 55 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago