Question

In a perfectly elastic collision, a 400-g ball moving toward the east at 3.7 m/s suddenly...

In a perfectly elastic collision, a 400-g ball moving toward the east at 3.7 m/s suddenly collides head-on with a 200 g ball sitting at rest. (a) Determine the velocity of the first ball just after the collision. (b) Determine the velocity of the second ball just after the collision. (c) Is kinetic energy conserved in this collision? How do you know?

please show work on paper

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A ball of mass 0.484 kg moving east (+xdirection) with a speed of 3.76 m/s collides...
A ball of mass 0.484 kg moving east (+xdirection) with a speed of 3.76 m/s collides head-on with a 0.242 kg ball at rest. Assume that the collision is perfectly elastic.    A)What is be the speed of the 0.484-kg ball after the collision? B)What is be the direction of the velocity of the 0.484-kg ball after the collision? C)What is the speed of the 0.242-kg ball after the collision? D)What is the direction of the velocity of 0.242-kg ball after...
A ball of mass 0.440 kg moving east (+x direction) with a speed of 3.60 m/s...
A ball of mass 0.440 kg moving east (+x direction) with a speed of 3.60 m/s collides head-on with a 0.260 kg ball at rest. If the collision is perfectly elastic, what will be the speed and direction of each ball after the collision?
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest...
A 5.0-kg mass moving at 8.0 m/s collides head-on with a 3.0-kg mass initially at rest If the collision is perfectly elastic, what is the speed of the masses just after the collision? Is the kinetic energy conserved?
A ball of mass 0.458 kg moving east (+x direction) with a speed of 3.76 m/s...
A ball of mass 0.458 kg moving east (+x direction) with a speed of 3.76 m/s collides head-on with a 0.229 kg ball at rest. Assume that the collision is perfectly elastic. 1.What is be the speed of the 0.458-kg ball after the collision? Express your answer to three significant figures and include the appropriate units. 2.What is be the direction of the velocity of the 0.458-kg ball after the collision?. 3.What is the speed of the 0.229-kg ball after...
a 1.2 kg ball moving with a velocity of 8.0m/s collides head on with a stationary...
a 1.2 kg ball moving with a velocity of 8.0m/s collides head on with a stationary ball and bounces back at a velocity or 4.0 m/s. If the collision is perfectly elastic, calculate (a) the mass of the other ball (b) the velocity of the other ball after the collision (c) the momentum of each ball before and after the collision (d) the kinetic energy of each ball before and after the collision
Two gliders are moving toward each other. Glider A has a mass of 500 g and...
Two gliders are moving toward each other. Glider A has a mass of 500 g and is moving with a velocity of 40 cm/s. Glider B has a mass of 400 g and is moving with a velocity of -50 cm/s. After a head-on collision, glider A moves with a velocity of 10 cm/s and glider B moves with a velocity of 50 cm/s. A.) calculate the total initial and final momenta of the two gliders. Determine whether linear momentum...
A 110 g ball moving to the right at 4.0 m/s catches up and collides with...
A 110 g ball moving to the right at 4.0 m/s catches up and collides with a 410 g ball that is moving to the right at 1.0 m/s . If the collision is perfectly elastic, what is the speed of the 110 g ball after the collision? If the collision is perfectly elastic, what is the direction of motion of the 110 g ball after the collision? If the collision is perfectly elastic, what is the speed of the...
A 2.0 g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a...
A 2.0 g particle moving at 7.2 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object. (a) Find the speed of each after the collision. 2.0 g particle m/s 1.0 g particle m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle m/s 1.0 g particle m/s (c) Find the final kinetic energy of the incident 2.0 g particle in the situations...
A 2.0 g particle moving at 5.6 m/s makes a perfectly elastic head-on collision with a...
A 2.0 g particle moving at 5.6 m/s makes a perfectly elastic head-on collision with a resting 1.0 g object. (a) Find the speed of each after the collision. 2.0 g particle m/s 1.0 g particle m/s (b) Find the speed of each particle after the collision if the stationary particle has a mass of 10 g. 2.0 g particle m/s 1.0 g particle m/s (c) Find the final kinetic energy of the incident 2.0 g particle in the situations...
A 7.50 kg bowling ball moving at 4.00 m/s makes an elastic head on collision with...
A 7.50 kg bowling ball moving at 4.00 m/s makes an elastic head on collision with a 2.50 kg bowling pin initially at rest. Find the velocity of the bowling pin after the collision.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT