Question

A vibrating guitar string emits a tone simultaneously with one from a 495-Hz tuning fork. If...

A vibrating guitar string emits a tone simultaneously with one from a 495-Hz tuning fork. If a beat frequency of 5.00 Hz results, what is the frequency of vibration of the string? a. 2 480 Hz b. 500 Hz c. 490 Hz d. 250 Hz e. Either choice b or c is valid.

Homework Answers

Answer #1

Use the concept of beat frequency to find the frequency of vibration of string as shown below,

***********************************************************************************************
This concludes the answers. If there is any mistake or omission, let me know in the comments immediately and I will fix it....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The G-string on a guitar is 64.8 cm long and is properly tuned to 196 Hz...
The G-string on a guitar is 64.8 cm long and is properly tuned to 196 Hz (fundamental) frequency. a. Sketch the first harmonic on this guitar string at two different times. b. What is the frequency of the G note one octave above this frequency? One octave below? c. What is the frequency of the note a perfect fifth above this frequency? d. What is the wavelength of the first harmonic of this guitar string? e. What is the speed...
A piano tuner listens to the 'D' Key and a standard 293.5 Hz tuning fork simultaneously....
A piano tuner listens to the 'D' Key and a standard 293.5 Hz tuning fork simultaneously. She hears a beat frequency of 5 Hz. (a) What are the two possibilities for this true frequency of the piano note? Upper Hz and lower Hz. (b) As she loosens the piano wire, the beat frequency changes to 6 Hz and 7 Hz. Which answer from part (a) was the true original frequency of the piano note. Higer Frequency Lower Frequency
Jennifer is using a tuning fork to tune her fifth guitar string, which should be at...
Jennifer is using a tuning fork to tune her fifth guitar string, which should be at a frequency of 110Hz, or note A2 in music terms. When she rings the tuning fork and plucks her guitar string, she hears 4.00beats/s. (a) What are the two possible frequencies of Jennifer's guitar string? (b) When Jennifer loosens the string slightly, she hears 3.00beats/s. What is the frequency of the guitar string? (c) Guitar strings have a fundamental harmonic with a wavelength of...
1. The G-string on a guitar is 64.8 cm long and is properly tuned to 196...
1. The G-string on a guitar is 64.8 cm long and is properly tuned to 196 Hz (fundamental) frequency. a. Sketch the first harmonic on this guitar string at two different times. b. What is the frequency of the G note one octave above this frequency? One octave below? c. What is the frequency of the note a perfect fifth above this frequency? d. What is the wavelength of the first harmonic of this guitar string? e. What is the...
1. The G-string on a guitar is 64.8 cm long and is properly tuned to 196...
1. The G-string on a guitar is 64.8 cm long and is properly tuned to 196 Hz (fundamental) frequency. a. Sketch the first harmonic on this guitar string at two different times. b. What is the frequency of the G note one octave above this frequency? One octave below? c. What is the frequency of the note a perfect fifth above this frequency? d. What is the wavelength of the first harmonic of this guitar string? e. What is the...
1. The G-string on a guitar is 64.8 cm long and is properly tuned to 196...
1. The G-string on a guitar is 64.8 cm long and is properly tuned to 196 Hz (fundamental) frequency. a. Sketch the first harmonic on this guitar string at two different times. b. What is the frequency of the G note one octave above this frequency? One octave below? c. What is the frequency of the note a perfect fifth above this frequency? d. What is the wavelength of the first harmonic of this guitar string? e. What is the...
1. Which of the following actions will increase the speed of sound in air? (a) decreasing...
1. Which of the following actions will increase the speed of sound in air? (a) decreasing the air temperature (b) increasing the frequency of the sound (c) increasing the air temperature (d) increasing the amplitude of the sound wave (e) reducing the pressure of the air. Why? 2. Suppose you’re on a hot air balloon ride, carrying a buzzer that emits a sound of frequency f. If you accidentally drop the buzzer over the side while the balloon is rising...
11. A simple pendulum undergoes small-angle oscillations. Which of the following pairs (mass, string length) will...
11. A simple pendulum undergoes small-angle oscillations. Which of the following pairs (mass, string length) will oscillate with a period greater than 2.2 seconds? a) (0.50 kg, 1.0 m) b) (0.40 kg, 0.80 m) c) (1.0 kg, 0.50 m) d) (0.80 kg, 0.40 m) e) none of the above answers are correct (numbers 15-17) An ideal horizontal spring-mass system begins oscillation with the mass at x=0 (the spring is relaxed) and moving in the -x direction at 6.00 m/s. The...
A stone is dropped from the top of a cliff. The splash it makes when striking...
A stone is dropped from the top of a cliff. The splash it makes when striking the water below is heard 3.2 s later. How high is the cliff? 2. The pressure variation is a sound wave is given by Δ P = 0.0035 sin (0.38 π x – 1350 π t) Determine a. the wavelength b. the frequency c. the speed and d. the displacement amplitude of the wave. Assume the density of the medium to be 2.2 x...