Question

A diffraction grating has 5.0×105 slits/m. Find the angular spread in the second-order spectrum between red...

A diffraction grating has 5.0×105 slits/m. Find the angular spread in the second-order spectrum between red light of wavelength 7.1×10−7 m and blue light of wavelength 4.7×10−7 m.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A diffraction grating has 7.0×105 slits/m. Find the angular spread in the second-order spectrum between red...
A diffraction grating has 7.0×105 slits/m. Find the angular spread in the second-order spectrum between red light of wavelength 7.0×10−7 m and blue light of wavelength 4.3×10−7 m .
A certain diffraction grating has 4000.0 slits per 1.000 cm. What is the angular separation, in...
A certain diffraction grating has 4000.0 slits per 1.000 cm. What is the angular separation, in degrees, between the blue (435.8 nm) and the green (546.1 nm) mercury lines in A) the first-order spectrum, and B) the second-order spectrum?
White light is spread out into its spectral components by a diffraction grating. If the grating...
White light is spread out into its spectral components by a diffraction grating. If the grating has 2055 lines per centimeter, at what angle does red light of wavelength 640 nm appear in first-order spectrum? (Assume that the light is incident normally on the grating.) °
What is the distance between the slits of diffraction grating that produces second order maximum for...
What is the distance between the slits of diffraction grating that produces second order maximum for the second Balmer line at an angle of 15 degree?
The hydrogen spectrum has a red line at 656 nm and a violet line at 434...
The hydrogen spectrum has a red line at 656 nm and a violet line at 434 nm. What angular separation between these two spectral lines is obtained with a diffraction grating that has 4440 lines/cm? (Assume that the light is incident normally on the grating.) first order separation     ° second order separation     ° third order separation     ° The hydrogen spectrum has a red line at 656 nm and a violet line at 434 nm. What angular separation between these two...
A 3.2-cmcm-wide diffraction grating has 2100 slits. It is illuminated by light of wavelength 530 nmnm...
A 3.2-cmcm-wide diffraction grating has 2100 slits. It is illuminated by light of wavelength 530 nmnm . A. What is the angle (in degrees) of the first diffraction order? B. What is the angle (in degrees) of the second diffraction order?
A diffraction grating is made up of slits of width a with separation d. The grating...
A diffraction grating is made up of slits of width a with separation d. The grating is illuminated by monochromatic plane waves of wavelength ? at normal incidence. What is the angular width of a spectral line observed in the first order if the grating has N slits? State your answer in terms of the given variables. ??w =? Monochromatic light with wavelength 515 nm is incident on a slit with width 0.0213 mm. The distance from the slit to...
A diffraction grating has 1.3 ?m spacing. Find the first-order diffraction angles for the following wavelengths....
A diffraction grating has 1.3 ?m spacing. Find the first-order diffraction angles for the following wavelengths. Part A: Find the first-order diffraction angles for orange light (615 nm ). Part B: Find the first-order diffraction angles for green light (540 nm ). Part C: Find the first-order diffraction angles for red light (680 nm ).
The hydrogen spectrum includes a red line at 656 nm and a blue-violet line at 434...
The hydrogen spectrum includes a red line at 656 nm and a blue-violet line at 434 nm. What are the angular separations between these two spectral lines for all visible orders obtained with a diffraction grating that has 4 620 grooves/cm? (In this problem assume that the light is incident normally on the gratings.) first order separation This is the angle that the red line makes with the normal to the grating. The problem asks for the angular separation between...
A. A diffraction grating has 2400 lines per centimeter. At what angle in degrees will the...
A. A diffraction grating has 2400 lines per centimeter. At what angle in degrees will the first-order maximum be for 522 nm wavelength light? B. What is the wavelength of light (in nanometers) falling on double slits separated by 2.34 μm if the third-order maximum is at an angle of 62.5º? C. At what angle, in degrees, is the second minimum for 555 nm light falling on a single slit of width 2.35 μm ? D. Find the distance between...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT