Question

MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of...

MASS SPRING SYSTEMS problem (Differential Equations)

A mass weighing 6 pounds, attached to the end of a spring, stretches it 6 inches.

If the weight is released from rest at a point 4 inches below the equilibrium position, and the entire system is immersed in a liquid that imparts a damping force numerically equal to 3 times the instantaneous velocity, solve:

a. Deduce the differential equation that models the mass-spring system.
b. Calculate the displacements of the mass ? (?) at all times “?”
c. Make a graph that shows the motion

Thank you for the help!

Homework Answers

Answer #1

The equation of motion is Since 6 pounds stretches it (the spring) by 6 inches, it means (spring constant). Now here denotes the distance from the mean (equilibrium) position of the spring system.

So the system of equation now reads, The initial condition reads, All the units are in pounds (for mass) and inches (for length).

Solving the above equation one gets, Note the exp factor overall which is due to the damping present in the system.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of...
MASS SPRING SYSTEMS problem (Differential Equations) A mass weighing 6 pounds, attached to the end of a spring, stretches it 6 inches. If the weight is released from rest at a point 4 inches below the equilibrium position, the system is immersed in a liquid that offers a damping force numerically equal to 3 times the instantaneous velocity, solve: a. Deduce the differential equation that models the mass-spring system. b. Calculate the displacements of the mass ? (?) at all...
A 1-kilogram mass is attached to a spring whose constant is 16 N / m, and...
A 1-kilogram mass is attached to a spring whose constant is 16 N / m, and then the entire system is immersed in a liquid that imparts a damping force equal to 10 times the instantaneous speed. Determine the equations of motion if the mass is initially released from a point 1 meter below the equilibrium position. differential equations
A mass weighing 19.6 N stretches a spring 9.8 cm. The mass is initially released from...
A mass weighing 19.6 N stretches a spring 9.8 cm. The mass is initially released from a point 2/3 meter above the equilibrium position with a downward velocity of 5 m/sec. (a) Find the equation of motion. (b)Assume that the entire spring-mass system is submerged in a liquid that imparts a damping force numerically equal to β (β > 0) times the instantaneous velocity. Determine the value of β so that the subsequent motion is overdamped.
A mass weighing 24 pounds attached to the end of the spring and stretches it 4...
A mass weighing 24 pounds attached to the end of the spring and stretches it 4 inches. The mass is initially released from rest from a point 3 inches above the equilibrium position with a downward velocity of 2 ft/sec. Find the equation of the motion?  
a mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches....
a mass weighing 24 pounds, attached to the end of a spring, stretches it 4 inches. initially, the mass is released from rest from a point of 2 inches above the equilibrium position. find the equation of motion. (g= 32 ft/s^2)
A 1-kilogram mass is attached to a spring whose constant is 18 N/m, and the entire...
A 1-kilogram mass is attached to a spring whose constant is 18 N/m, and the entire system is then submerged in a liquid that imparts a damping force numerically equal to 11 times the instantaneous velocity. Determine the equations of motion if the following is true. (a) the mass is initially released from rest from a point 1 meter below the equilibrium position x(t) = m (b) the mass is initially released from a point 1 meter below the equilibrium...
A mass weighing 16 pounds is attached to a spring and stretches it 4 feet. You...
A mass weighing 16 pounds is attached to a spring and stretches it 4 feet. You release the mass from rest one foot below equilibrium. (a) What is the initial value problem that models this scenario? (b) What is the equation of motion? (c) What is the period of motion? (d) Assume now that there is a damping force equivalent to 6 times the velocity. Repeat parts (a) and (b). (e) Now assume there is still the damping force, but...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 20 cos(3t). (Use g = 32 ft/s2 for the acceleration...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released...
A mass weighing 16 pounds stretches a spring 8 3 feet. The mass is initially released from rest from a point 3 feet below the equilibrium position, and the subsequent motion takes place in a medium that offers a damping force that is numerically equal to 1 2 the instantaneous velocity. Find the equation of motion x(t) if the mass is driven by an external force equal to f(t) = 10 cos(3t). (Use g = 32 ft/s2 for the acceleration...
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to...
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to 2 times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 9 ft/s. (Use g = 32 ft/s2 for the acceleration due to gravity.) x(t) = Find the time at which the mass attains its...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT