Question

A railroad car of mass 22 500 kg is traveling east 5.50 m/s and collides with...

A railroad car of mass 22 500 kg is traveling east 5.50 m/s and collides with a railroad car of mass 30 000 kg traveling west 1.50 m/s. Find the velocity of the railroad cars that become coupled after the collision.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A railroad car of mass 3.45 x 104 kg is traveling east at 5.50 m/s and...
A railroad car of mass 3.45 x 104 kg is traveling east at 5.50 m/s and collides with a railroad car of mass 4.21 x 104 kg traveling west 1.50 m/s. Find the velocity (in m/s) of the railroad cars that become coupled after the collision. Assume east is the positive direction
Car A of mass 1,274 kg is traveling east at 13.2 m/s when it collides with...
Car A of mass 1,274 kg is traveling east at 13.2 m/s when it collides with car B of mass 1,596 kg which is traveling at 14.6 m/s at 71.4 degrees N of W. The two cars stick together after the collision. What is the magnitude of the final velocity of the cars?
A railroad car of mass 2.50 ✕ 104 kg moving at 3.40 m/s collides and couples...
A railroad car of mass 2.50 ✕ 104 kg moving at 3.40 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? (b) How much kinetic energy is lost in the collision?
A railroad car of mass 3.00 ? 104 kg moving at 3.00 m/s collides and couples...
A railroad car of mass 3.00 ? 104 kg moving at 3.00 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? _______ m/s (b) How much kinetic energy is lost in the collision? _______ J
A railroad car of mass 2.70 ✕ 104 kg moving at 3.50 m/s collides and couples...
A railroad car of mass 2.70 ✕ 104 kg moving at 3.50 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? m/s (b) How much kinetic energy is lost in the collision? J
A railroad car of mass 2.55 ✕ 104 kg moving at 3.25 m/s collides and couples...
A railroad car of mass 2.55 ✕ 104 kg moving at 3.25 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? m/s (b) How much kinetic energy is lost in the collision? J
A railroad car of mass 2.90 ? 104 kg moving at 3.05 m/s collides and couples...
A railroad car of mass 2.90 ? 104 kg moving at 3.05 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? m/s (b) How much kinetic energy is lost in the collision? J
A railroad car of mass 3.15 ✕ 104 kg moving at 3.10 m/s collides and couples...
A railroad car of mass 3.15 ✕ 104 kg moving at 3.10 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? ____m/s (b) How much kinetic energy is lost in the collision? _____J
A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at 20.0 m/s. The cars stick together. What is the speed of the wreckage just after the collision? In what direction does the wreckage move just after the collision?
A 940 kg car traveling east at 12.3 m/s collides with a 670 kg car traveling...
A 940 kg car traveling east at 12.3 m/s collides with a 670 kg car traveling north at 20.3 m/s . The cars stick together. Assume that any other unbalanced forces are negligible. A) In what direction does the wreckage move just after the collision? B) What is the speed of the wreckage just after the collision?