Question

A block of ice weighs 2 kg, has a volume of 2 liters, and is initially...

A block of ice weighs 2 kg, has a volume of 2 liters, and is initially 2 degrees F. It is left on a counter with the ambient temperature of 71 degrees F. How long until the ice melts? The ice is frozen water in she shape of a ball.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A 36.6-kg block of ice at 0 °C is sliding on a horizontal surface. The...
1. A 36.6-kg block of ice at 0 °C is sliding on a horizontal surface. The initial speed of the ice is 9.02 m/s and the final speed is 3.89 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 °C. 2. A rock of mass 0.396 kg...
A 5.00 kg block of ice melts at a temperature of 0 degrees Celsius. What is...
A 5.00 kg block of ice melts at a temperature of 0 degrees Celsius. What is the change in entropy of the ice when changing from solid ice to water? be detailed pls
A very large block of ice, initially at temperature T = 0 oC is placed in...
A very large block of ice, initially at temperature T = 0 oC is placed in a sealed insulated container full of Helium gas, initially at temperature 325 oC and pressure of 3.1 atm. The volume of the Helium is 920 L, and is constant. Helium is a monatomic ideal gas. What is the mass of the liquid water when the system comes to equilibrium? (In other words, how much ice melts?) Assume no heat is lost to the surroundings....
A block of ice of mass 0.9 kg and initial temperature T = 0 oC is...
A block of ice of mass 0.9 kg and initial temperature T = 0 oC is placed in a sealed insulated container full of Helium gas, initially at temperature 220 oC and pressure of 1 atm.   The volume of the Helium is 680 L, and is constant. Helium is a monatomic ideal gas. What is the mass of the liquid water when the system comes to equilibrium? (In other words, how much ice melts?) Assume no heat is lost to...
A 4.50-kg block of ice at 0.00∘C falls into the ocean and melts. The average temperature...
A 4.50-kg block of ice at 0.00∘C falls into the ocean and melts. The average temperature of the ocean is 3.50∘C, including all the deep water. By how much does the change of this ice to water at 3.50∘C alter the entropy of the world? (Hint: Do you think that the ocean temperature will change appreciably as the ice melts?) Does the entropy increase or decrease?
A block of ice, mass 0.98 kg and initial temperature of -12 oC, is placed in...
A block of ice, mass 0.98 kg and initial temperature of -12 oC, is placed in an insulating container. 2.57 kg of water at temperature 18 oC, is added to the container. The water and ice exchange heat, but no other heat flows into or out of the container. In the process of the water and ice reaching equilibrium, how much ice melts? Give your answer in kg to three digits. Note: It is possible that the answer is zero.
A steel sphere has an inner volume of 4 liters and weighs 15 lbs when empty....
A steel sphere has an inner volume of 4 liters and weighs 15 lbs when empty. it also has a hole in the top that is 3.33 mm in diameter. the sphere is half filled with ice and the other half is filled with air. the whole system starts at STP. (you do not need the specific heat of air ) 1. what is the total energy needed to raise this system to 100 degrees C? A 999 W heater...
A 40-g block of ice is cooled to −68°C and is then added to 570 g...
A 40-g block of ice is cooled to −68°C and is then added to 570 g of water in an 80-g copper calorimeter at a temperature of 28°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g · °C...
A 60 kg block of ice begins at -60 degrees the specific heat of ice is...
A 60 kg block of ice begins at -60 degrees the specific heat of ice is 2090 j/(kg)C. The latent heat of fusion of water is 3.3 x 10^5 and the latent heat of vaporization is 2.3 x 10^6 J/kg. How much energy is required to heat the ice to 0 degrees Celcius (melting point)? How much energy is required to heat the ice from -50C to the melting point and melt the ice? How much energy is required to...
A 40-g block of ice is cooled to −70°C and is then added to 570 g...
A 40-g block of ice is cooled to −70°C and is then added to 570 g of water in an 80-g copper calorimeter at a temperature of 22°C. Determine the final temperature of the system consisting of the ice, water, and calorimeter. (If not all the ice melts, determine how much ice is left.) Remember that the ice must first warm to 0°C, melt, and then continue warming as water. (The specific heat of ice is 0.500 cal/g · °C...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT