Question

The volume of some air, assumed to be an ideal gas, in the cylinder of a...

The volume of some air, assumed to be an ideal gas, in the cylinder of a car engine is 540cm3 at a pressure of 1.1 × 105Pa and a temperature of 27 °C. The air is suddenly compressed, so that no thermal energy enters or leaves the gas, to a volume of 30 cm3. The pressure rises to 6.5 × 106Pa.

Determine the temperature of the gas after the compression.

Homework Answers

Answer #2

Since the air is suddenly compressed, so that no thermal energy enters or leaves the gas the process is adiabatic.

Equation of adiabatic process is TV-1 =a constant.

where T= temperature of gas V=volume of gas

hence    T1V1-1 = T2V2-1   .......................(1) where  

T1= initial temperature of gas=270C=27+273=300K

V1=initial volume of gas=540cm3

  T2= final temperature of gas =?

V2=final volume of gas=30cm3

= ratio of specific heat (Cp/Cv)=1.4 [for air]

eq(1) becomes

300x5401.4-1 = T2x301.4-1  

300x540.4 = T2x30.4

T2=300x540.4 /30.4 =300x(540 /30).4

=300x18.4 =300x3.178=953K

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A Jaguar XK8 convertible has an eight-cylinder engine. At the beginning of its compression stroke, one...
A Jaguar XK8 convertible has an eight-cylinder engine. At the beginning of its compression stroke, one of the cylinders contains 498 cm3 of air at atmospheric pressure (1.01×105Pa) and a temperature of 27.0 ?C. At the end of the stroke, the air has been compressed to a volume of 46.4 cm3 and the gauge pressure has increased to 2.80×106 Pa . Compute the final temperature.
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The...
A cylinder contains 1.5 moles of ideal gas, initially at a temperature of 113 ∘C. The cylinder is provided with a frictionless piston, which maintains a constant pressure of 6.4×105Pa on the gas. The gas is cooled until its temperature has decreased to 27∘C. For the gas CV = 11.65 J/mol⋅K, and the ideal gas constant R = 8.314 J/mol⋅K. 1.Find the work done by the gas during this process. 2.What is the change in the internal (thermal) energy of...
An ideal gas is compressed from a volume of Vi 5 5.00 L to a volume...
An ideal gas is compressed from a volume of Vi 5 5.00 L to a volume of Vf 5 3.00 L while in thermal contact with a heat reservoir at T 5 295 K as in Figure P12.21. During the compression process, the piston moves down a distance of d 5 0.130 m under the action of an average external force of F 5 25.0 kN. Find (a) the work done on the gas, (b) the change in internal energy...
ir is mostly a mixture of diatomic oxygen and nitrogen; treat it as an ideal gas...
ir is mostly a mixture of diatomic oxygen and nitrogen; treat it as an ideal gas with ?=1.40, ?v =20.8J⋅mol−1⋅K−1. Theuniversalgasconstantis?=8.315J⋅mol−1 K−1. The compression ratio of a diesel engine is 15:1, meaning that air in the cylinders is compressed to 1/15 of its initial volume. If the initial pressure is 1.01 × 105 Pa and the initial temperature is 300 K, find: i) The final temperature after adiabatic compression. ii) The final pressure after adiabatic compression. iii) How much work...
An ideal Otto engine has a compression ratio of 10 and uses air as the working...
An ideal Otto engine has a compression ratio of 10 and uses air as the working fluid. The state of air at the beginning of the compression process is 100 kPa and 27 0C. The maximum temperature in the cycle is 2100K. (R=0.287 for air) (using variable specific heat) Draw the P-v diagram of the Otto cycle Determine the specific internal energies at the beginning and the end of the compression, Determine the specific internal energies before and after the...
Air (a diatomic ideal gas) at 26.5°C and atmospheric pressure is drawn into a bicycle pump...
Air (a diatomic ideal gas) at 26.5°C and atmospheric pressure is drawn into a bicycle pump (see figure below) that has a cylinder with an inner diameter of 2.50 cm and length 47.0 cm. The downstroke adiabatically compresses the air, which reaches a gauge pressure of 8.00 105 Pa before entering the tire. We wish to investigate the temperature increase of the pump. The pump is made of steel that is 1.80 mm thick. Assume 4.00 cm of the cylinder's...
A cylinder sealed with a piston contains an ideal gas. Heat is added to the gas...
A cylinder sealed with a piston contains an ideal gas. Heat is added to the gas while the piston remains locked in place until the absolute temperature of the gas doubles. 1. The pressure of the gas a. doubles b. stays the same c. drops in half 2. The work done by the surroundings on the gas is a. positive b. negative c. zero 3. The thermal energy of the gas a. doubles b. stays the same c. drops in...
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the...
A cylinder of monatomic ideal gas is sealed in a cylinder by a piston. Initially, the gas occupies a volume of 3.00 L and the pressure is initially 105 kPa. The cylinder is placed in an oven that maintains the temperature at a constant value. 65.0 J of work is then done on the piston, compressing the gas (in other words, the gas does −65.0 J of work). The work is done very slowly so that the gas maintains a...
Your new engine design consists of a piston cylinder arrangement. The engine operates with mostly air...
Your new engine design consists of a piston cylinder arrangement. The engine operates with mostly air and a small amount of fuel. The system undergoes a cycle. The initial Pressure and temperature are p1= 1bar and T1= 27°C. The system undergoes a power cycle consisting of the following process: Process 1-2                         constant volume to a pressure, P2 of 4 bars Process 2-3                         expansion of pv=constant Process 3-1                         constant-pressure compression Draw the system and pv diagrams If P2 is 4...
Starting with 2.50mol of N2 gas (assumed to be ideal) in a cylinder at 1.00 atm...
Starting with 2.50mol of N2 gas (assumed to be ideal) in a cylinder at 1.00 atm and 20.0 C, a chemist first heats the gas at constant volume, adding 1.36 X 10^4 J of heat, then continues heating and allows the gas to expand at constant pressure to twice its original volume. (A) Calculate the final temperature of the gas. (Book Answer says: 837 C) (B) Calculate the amount of work done by the gas. (Book Answer says: 11.5 kJ)...