Question

A cello string vibrates in its fundamental mode with a frequency of 159 1/s. The vibrating...

A cello string vibrates in its fundamental mode with a frequency of 159 1/s. The vibrating segment is 32.2 cm long and has a mass of 0.69 g. Find the tension in the string. Answer in units of N. Find the frequency of the string when it vibrates in eight segments. Answer in units of 1/s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stretched wire vibrates in its fundamental mode at a frequency of 236 vibrations/s. What would...
A stretched wire vibrates in its fundamental mode at a frequency of 236 vibrations/s. What would be the fundamental frequency if the wire were half as long, with twice the diameter and 2.1 times the tension? Answer in units of Hz.
A string of a violin vibrates in its fundamental mode of one loop with frequency of...
A string of a violin vibrates in its fundamental mode of one loop with frequency of 100 Hz. What will be the frequency of the wave that will produce a three-loop pattern on the same string?
a. If a violin string vibrates at 480 Hz as its fundamental frequency, what are the...
a. If a violin string vibrates at 480 Hz as its fundamental frequency, what are the frequencies of the first four harmonics? Enter your answers in ascending order separated by commas. b.The speed of waves on a string is 92 m/s . If the frequency of standing waves is 490 Hz , how far apart are two adjacent nodes? Express your answer to two significant figures and include the appropriate units. c. If two successive overtones of a vibrating string...
A guitar string vibrates in its fundamental mode, with nodes at its ends. The length of...
A guitar string vibrates in its fundamental mode, with nodes at its ends. The length of the rope segment that vibrates freely is 0.386 m. The maximum transverse acceleration of a point at the midpoint of the segment is 8.40x103 m / s2, and the maximum transverse velocity is 3.80 m / s. a) Calculate the amplitude of this standing wave. b) How fast are transverse traveling waves in this rope? a a) 1.72 m b) 543 m/s b a)...
​A string is 6 m long and vibrates with a fundamental frequency of 2000 Hz. If...
​A string is 6 m long and vibrates with a fundamental frequency of 2000 Hz. If you fret down 1/3 ​of the way what is the new fundamental frequency? ​
A violin string of length 40 cm and mass 1.4 g has a frequency of 526...
A violin string of length 40 cm and mass 1.4 g has a frequency of 526 Hz when it is vibrating in its fundamental mode. (a) What is the wavelength of the standing wave on the string? (b) What is the tension in the string? (c) Where should you place your finger to increase the frequency to 676 Hz?cm from the fixed end of the string (from the peg of the violin)
A violin string which is 30 cm long is tuned using a 440 Hz reference tone....
A violin string which is 30 cm long is tuned using a 440 Hz reference tone. (a) What is the wavelength fundamental mode of the string? (b) When the string has a tension of 34 N a violinist hears 5.7 beats per second. What are the frequencies at which the string might be vibrating? (c) The tension is increased and the violinist hears 3.8 beats per second. What is the original frequency of the string? (d) What should the tension...
To apply Problem-Solving Strategy 12.1 Standing waves and normal modes. A cellist tunes the C string...
To apply Problem-Solving Strategy 12.1 Standing waves and normal modes. A cellist tunes the C string of her instrument to a fundamental frequency of 65.4 Hz H z . The vibrating portion of the string is 0.600 m m long and has a mass of 14.4 g g . With what tension must she stretch that portion of the string? What percentage increase in tension is needed to increase the frequency from 65.4 Hz H z to 73.4 Hz H...
Acoustic 7. One string of a certain musical instrument is 80 cm long and has mass...
Acoustic 7. One string of a certain musical instrument is 80 cm long and has mass of 8,72 gram. It is being played in a room where the speed of sound is 344 m/s. a. To what tension must you adjust the string so that, when vibrating in its second overtone, it produces sound of wavelength 3,40 cm? b. What frequency sound does this string produce in its fundamental mode of vibration? PLEASE ANSWER CLEARLY
A 121 cm-long, 3.8 g string oscillates in its m = 3 mode with a frequency...
A 121 cm-long, 3.8 g string oscillates in its m = 3 mode with a frequency of 144 Hz and a maximum amplitude of 5.0 mm. What are the wavelength and the tension in the string?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT