Question

a 1.50 kg " particle A" travelling with velocity ua= 0.8im/s collides with a 3.60 kg...

a 1.50 kg " particle A" travelling with velocity ua= 0.8im/s collides with a 3.60 kg with velocity ub = 2.2j m/s . there is a short collision that lasts 0.5 seconds after the two particles stick to each other and move together .

Find their velocities in unit vector notation while they move together

find the average force in unit vector notation on particle A during collision time

Draw a clear digram and show Ox and Oy axes

plz show all steps

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4.0 kg object is travelling south at a velocity of 2.8 m/s when it collides...
A 4.0 kg object is travelling south at a velocity of 2.8 m/s when it collides with a 6.0 kg object travelling east at a velocity of 3.0 m/s. If these two objects stick together upon collision, at what velocity do the combined masses move?
A 2000-kg car travelling at 50 m/s collides with an object of (your student number)-kg travelling...
A 2000-kg car travelling at 50 m/s collides with an object of (your student number)-kg travelling at 12 m/s inan opposite direction. (a) Find change in kinetic energy if both stick together and if collision is absolutely elastic. (b)Show final velocities in both cases for both objects. (c) What percentage of the original kinetic energy is this?
A ball with a mass of 1.50 kg travelling +2.00 m/s collides with a stationary ball...
A ball with a mass of 1.50 kg travelling +2.00 m/s collides with a stationary ball with a mass of 1.00 kg. After the collision, the velocity of the 1.50 kg ball is +0.40 m/s. What is the velocity of the 1.00 kg ball after the collision? Select one: a. - 0.7 m/s b. + 3.6 m/s c. + 2.4 m/s d. + 1.8 m/s An 18 000 kg freight car travelling 1.75 m/s[E] collides with a 27 000 kg...
A particle m1 = 0.500 kg moving with a velocity of v1 = (3.60 m/s, 25.0°)...
A particle m1 = 0.500 kg moving with a velocity of v1 = (3.60 m/s, 25.0°) collides and sticks with another particle m2 = 1.50 kg moving with a velocity of v2 = (2.00 m/s, 180.0°). Find the final velocity of the system after the collision. Find the ij vector and the magnitude and direction using the vector components method. Then use the graphical method to scale to find the magnitude and direction. The two methods should compare within a...
A 2500 kg car moving east at 10.0 m/s collides with a 3000 kg car moving...
A 2500 kg car moving east at 10.0 m/s collides with a 3000 kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 47.0° north of east and at a speed of 6.66 m/s. Find the velocity of the 3000 kg car before the collision. m/s north
A particle of mass 2 kg and velocity 5 m/s collides head on with another particle...
A particle of mass 2 kg and velocity 5 m/s collides head on with another particle of mass 4 kg originally at rest. After the collision, the particle 1 continues in the same direction with the speed of 2.5 m/s. a. The velocity of particle 2 after collision is m/s. b. The energy (absolute value) lost in this collision is
Car #1 with a mass of 1.50 x 103 kg is travelling east at a speed...
Car #1 with a mass of 1.50 x 103 kg is travelling east at a speed of 25.0 m/s. It collides in the middle of an intersection with Car #2 which has a mass of 2.50 x 103 kg and enters the intersection travelling north at a speed of 20.0 m/s. (a) Find the magnitude and direction of the velocity of the wreckage, assuming that after the collision the two cars stick together and that frictional forces can be neglected....
A block with mass m1 = 10 kg moving at 5 m/s collides with another block...
A block with mass m1 = 10 kg moving at 5 m/s collides with another block with mass m2 = 20 kg moving the other way at 1 m/s. The two blocks stick together after the collision. (a) What is their common final velocity, vf ? (b) The blocks collide again, this time elastically. Assume that the outgoing blocks move away from the collision along the initial line of approach. What are the final velocities, v1f and v2f ?
A car of mass 950 kg travelling north at 50 km/h collides with a car of...
A car of mass 950 kg travelling north at 50 km/h collides with a car of mass 1350 kg going south at 45 km/h in a completely inelastic collision (i.e. they stick together). Determine the velocity of the car/car combination immediately after the collision. (North is the positive direction and south is the negative direction.) km/h
A particle of mass m1 = 1.32 kg with an initial velocity v1 = 4.56 m/s...
A particle of mass m1 = 1.32 kg with an initial velocity v1 = 4.56 m/s has a completely inelastic collision with a second particle of mass m2 = 3.68 kg with an initial velocity v2 = 3.06 m/s. What is the velocity of the combined particles immediately after the collision? (Express your answer in vector form.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT