Question

A bucket of water of mass 15.6kg is suspended by a rope wrapped around a windlass,...

A bucket of water of mass 15.6kg is suspended by a rope wrapped around a windlass, that is a solid cylinder with diameter 0.270m with mass 11.2kg . The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls a distance 10.2m to the water. You can ignore the weight of the rope.

A) What is the tension in the rope while the bucket is falling?

B) With what speed does the bucket strike the water?

C) What is the time of fall?

D) While the bucket is falling, what is the force exerted on the cylinder by the axle?

Homework Answers

Answer #1

Let the tension in the rope is T ,

let the accleration of bucket is a ,

A)

Now, using the concept of effective force and mass ,

a = m*g/(m + Ipulley/r^2)

a = 15.6 * 9.8 /(15.6 + 0.5 * 11.2 * r^2/r^2)

a = 7.21 m/s^2

for the bucket ,

mg - T = m*a

15.6 * 9.8 - T = 15.6 * 7.21

T = 40.4 N

the tension in the rope is 40.4 N

B)

d = 10.2 m

using third equation of motion ,

v^2 = 2*10.2 *7.21

v = 12.13 m/s

the speed of bucket when hitting ground is 12.13 m/s

C)

let the time of fall is t ,

t = 12.13/7.21

t = 1.68 s

the time of fall is 1.68 s

D)

let the force is N

N = 11.2 * 9.8 + 40.4

N = 150.2 N

the force exerted on the cylinder by the axle is 150.2 N

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bucket of water of mass 15.9 kg is suspended by a rope wrapped around a...
A bucket of water of mass 15.9 kg is suspended by a rope wrapped around a windlass, that is a solid cylinder with diameter 0.350 m with mass 12.4 kg . The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls a distance 10.2 m to the water. You can ignore the weight of the rope. Part A What is the tension in the rope while...
A 1.53kg bucket hangs on a rope wrapped around a pulley of mass 7.07kg and radius...
A 1.53kg bucket hangs on a rope wrapped around a pulley of mass 7.07kg and radius 66cm. This pulley is frictionless in its axle, and has the shape of a solid uniform disk. A. Explain conceptually why the moment of inertia of this pulley is less than the moment of inertia of a hoop around its center with the same mass and circumference as the pulley. B. What is the angular acceleration of the pulley? C. What is the acceleration...
A 90 kg mass is tied to a massless rope wrapped around a solid cylindrical drum,...
A 90 kg mass is tied to a massless rope wrapped around a solid cylindrical drum, mounted on a frictionless horizontal axle. When the mass is released, it falls with acceleration 3.4 m/s2 . a. Find the rope tension. Express your answer in newtons. b. Find the drum's mass.
A bucket hands over a well by a rope. The rope is wrapped around a winch...
A bucket hands over a well by a rope. The rope is wrapped around a winch (a wheel) which can be treated as a disk with a mass of 5.72 kg and a radius of 0.225m. The bucket itself weights 2.15kg and starts 11.6m from the surface of the water. The rope does not slip on the winch, and we can neglect any friction and air resistance. b. Use Newton's second law to find the linear acceleration of the bucket...
A bucket with mass m = 1.0 kg is suspended over a well by a winch...
A bucket with mass m = 1.0 kg is suspended over a well by a winch and rope. The winch consists of a solid cylinder with mass 4.0 kg and radius R = 0.10 m about which the rope is wrapped. A handle is attached to one end in order to rotate the cylinder. For the purposes of this example, we are going to ignore any frictional forces in the winch. Now suppose that the winch handle breaks off, allowing...
A bucket with mass m = 1.0 kg is suspended over a well by a winch...
A bucket with mass m = 1.0 kg is suspended over a well by a winch and rope. The winch consists of a solid cylinder with mass M = 7.0 kg and radius R = 0.10 m about which the rope is wrapped. The winch has a finite frictional force inside. A handle is attached to one end in order to rotate the cylinder. Now suppose that the winch handle breaks off, allowing the bucket to fall to the water...
4. A massless rope is wrapped around a uniform solid cylinder that has radius of 30...
4. A massless rope is wrapped around a uniform solid cylinder that has radius of 30 cm and mass 10 kg, as shown in the figure. The cylinder begins to unwind when it is released and allowed to rotate. (a) What is the acceleration of the center of mass of the cylinder? (b) If 90 cm of rope is unwound from the cylinder as it falls, how fast is it rotating at this instant?
in the figure a rope is wrapped around a wheel of radius R= 2.0 m. the...
in the figure a rope is wrapped around a wheel of radius R= 2.0 m. the moment of inertia if the wheel is 54 kg•m^2. the wheel is mounted with frictionless bearings on an axle through its center. A block of mass 14 kg is suspended from the end of the rope. when the system is released from rest it is observed that the block descends 10 m in 2.0 sec. what is the speed of the block?
A light string is wrapped around a solid cylinder and a 300 g mass hangs from...
A light string is wrapped around a solid cylinder and a 300 g mass hangs from the free end of the string, as shown. When released, the mass falls a distance 54 cm in 3.0 s. a. Draw free-body diagrams for the block and the cylinder. b. Calculate the tension in the string. c. Calculate the mass of the cylinder Please explain thoroughly, with pictures. Thx!
A stone is suspended from the free end of a wire that is wrapped around the...
A stone is suspended from the free end of a wire that is wrapped around the outer rim of a pulley, as shown in the figure (see the figure (Figure 1) ). The pulley is a uniform disk with mass 12.0kg and radius 31.0cm and turns on frictionless bearings. You measure that the stone travels a distance 12.7m during a time interval of 2.00s starting from rest. A. Find the mass of the stone. Take the free fall acceleration to...