Question

3) A very long uniform line of charge has charge per unit length (lambda)1 = 4.72...

3) A very long uniform line of charge has charge per unit length (lambda)1 = 4.72 (Mu)C/m and lies along the x-axis. A second long uniform line of charge has charge per unit length (lambda)2 = -2.42 (Mu)C/m and is parallel to the x-axis at y1 = 0.400 m .

Part A What is the magnitude of the net electric field at point y2 = 0.200 m on the y-axis?

Part C What is the magnitude of the net electric field at point y3 = 0.600 m on the y-axis?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A very long uniform line of charge has charge per unit length 3.80 µC/m and lies...
A very long uniform line of charge has charge per unit length 3.80 µC/m and lies along the x-axis. A second long uniform line of charge has charge -2.00 µC/m per unit length and is parallel to the x-axis at y = 0.400 m. What is the net electric field (magnitude and direction) at the following points on the y-axis? (a) y = 0.200 m (b) y = 0.600 m
An infinite line charge of uniform linear charge density lambda = -3.1 mu or micro CC/m...
An infinite line charge of uniform linear charge density lambda = -3.1 mu or micro CC/m lies parallel to the y axis at x = 0 m. A point charge of 0.6 mu or micro CC is located at x = 2.0 m, y = 3.0 m. Find the x component of the electric field at x = 3.0 m, y = 2.5 m. Answer in kN/C
Two infinitely long parallel wires have a uniform charge per unit length lambda and -lambda respectively....
Two infinitely long parallel wires have a uniform charge per unit length lambda and -lambda respectively. The wires are parallel with the z axis. The positively charged wire intersects the x axis at x = -a. and the negatively charged wire intersects the ,r axis at ,r = +a. (a) Choose the origin as the reference point where the potential is zero, and express the potential at an arbitrary point (x. y) in the xy plane in terms of .v,...
Please provide steps, thank you A uniform line charge of linear charge density lambda = 4.3...
Please provide steps, thank you A uniform line charge of linear charge density lambda = 4.3 nC/m extends from x = 0 to x = 5 m. a. Find the electric field on the x axis at x = 6 m. (N/C) b. Find the electric field on the x axis at x = 280 m. (N/C) c. Find the field at x = 280 m, using the approximation that the charge is a point charge at the origin. (N/C)...
An infinite line charge of uniform linear charge density lambda = -2.7 microC/m lies parallel to...
An infinite line charge of uniform linear charge density lambda = -2.7 microC/m lies parallel to the y axis at x = 0 m. A point charge of 3.5 microC is located at x = 1.0 m, y = 2.0 m. Find the x component of the electric field at x = 2.0 m, y = 1.5 m.
A straight line segment has a length L that carries a uniform line charge lambda which...
A straight line segment has a length L that carries a uniform line charge lambda which extends from z = 0 to z = L. A) Calculate the potential a distance z from the origin. Assume that z > L. B) Calculate the electric field from the potential. C) Show that the electric field from the line charge falls off essentially as a point charge (so 1/z^2) as z gets large and a charge of lambda*L in the z-direction using...
Consider an infinitely long line of charge having uniform charge per unit length 5.4 µC/m. Determine...
Consider an infinitely long line of charge having uniform charge per unit length 5.4 µC/m. Determine the total electric flux through a closed right circular cylinder of length 1.7 m and radius 80 m that is parallel to the line charge, if the distance between the axis of the cylinder and the line of charge is 10 m. The permittivity of free space is 8.8542 × 10−12 C 2 /N · m2 . Answer in units of N · m2...
A long, conductive cylinder of radius R1 = 3.40 cm and uniform charge per unit length...
A long, conductive cylinder of radius R1 = 3.40 cm and uniform charge per unit length λ = 453 pC/m is coaxial with a long, cylindrical, non-conducting shell of inner and outer radii R2 = 11.9 cm and R3 = 13.6 cm, respectively. If the cylindrical shell carries a uniform charge density of ρ = 40.5 pC/m3, find the magnitude of the electric field at the following radial distances from the central axis: R1 = 2.58 cm R2 = 7.65...
An infinitely long line charge of uniform linear charge density λ = -2.10 µC/m lies parallel...
An infinitely long line charge of uniform linear charge density λ = -2.10 µC/m lies parallel to the y axis at x = -3.00 m. A point charge of 2.40 µC is located at x = 2.00 m, y = 3.00 m. Find the electric field at x = 3.00 m, y = 2.50 m.
A thin rod of length l and uniform charge per unit length λ lies along the...
A thin rod of length l and uniform charge per unit length λ lies along the x axis as shown figure. (a) Show that the electric field at point P, a distance y from the rod, along the perpendicular bisector has no x component and is given by E=(2kλsinθ0)/y. (b) Using your result to (a), show that the field of a rod of infinite length is given by E=2kλ/y.