Question

A proton (q = 1.6 X 10-19 C, m = 1.67 X 10-27 kg) moving with...

A proton (q = 1.6 X 10-19 C, m = 1.67 X 10-27 kg) moving with constant velocity enters a region containing a constant magnetic field that is directed along the z-axis at (x,y) = (0,0) as shown. The magnetic field extends for a distance D = 0.75 m in the x-direction. The proton leaves the field having a velocity vector (vx, vy) = (3.9 X 105 m/s, 1.9 X 105 m/s).

1)What is v, the magnitude of the velocity of the proton as it entered the region containing the magnetic field?

2)What is R, the radius of curvature of the motion of the proton while it is in the region containing the magnetic field?

3)What is h, the y co-ordinate of the proton as it leaves the region conating the magnetic field?


4)What is Bz, the z-component of the magnetic field? Note that Bz is a signed number.
If the incident velocity v were increased, how would h and θ change, if at all?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A proton (q = 1.60×10−19 C , m = 1.67×10−27 kg )moves in a uniform magnetic...
A proton (q = 1.60×10−19 C , m = 1.67×10−27 kg )moves in a uniform magnetic field B⃗ =( 0.530 T )i^. At t = 0 the proton has a velocity components vx = 1.60×105 m/s , vy=0, and vz = 1.90×105 m/s . What is the magnitude of the magnetic force acting on the proton? What is the direction of the magnetic force acting on the proton? In addition to the magnetic field there is a uniform electric field...
A proton, with mass 1.67 × 10-27 kg and charge +1.6 × 10-19 C, is sent...
A proton, with mass 1.67 × 10-27 kg and charge +1.6 × 10-19 C, is sent with velocity 7.1 × 104 m/s in the +x direction into a region where there is a uniform electric field of magnitude 730 V/m in the +y direction. What are the magnitude and direction of the uniform magnetic field in the region, if the proton is to pass through undeflected? Assume that the magnetic field has no x-component and neglect gravitational effects. Draw a...
A beam of protons (proton mass is 1.67 x 10 -​ 27 kg) moves at 3...
A beam of protons (proton mass is 1.67 x 10 -​ 27 kg) moves at 3 x 10 5​ m/s through a uniform magnetic field with magnitude 2 T. The magnetic field has exactly equal components along the positive ​y and negative ​x axes and no component along the ​z axis. The velocity of each proton lies in the ​xz-​ plane at an angle of 30 0​ ​to the​ z-​ axis. (a) Write the magnetic field ​B and the velocity...
A proton (m = 1.67 x 10-27 kg) travels a distance of 4.3 cm parallel to...
A proton (m = 1.67 x 10-27 kg) travels a distance of 4.3 cm parallel to a uniform electric field 2.3 x105 V/m between the plates shown in the figure. If the initial velocity is 1.9 x 105 m/s, find the magnitude of its final velocity in m/s. (* Ignore gravity)
A proton (e = 1.60 X 10-19 C and m =  1.67 X 10-27 kg) is traveling...
A proton (e = 1.60 X 10-19 C and m =  1.67 X 10-27 kg) is traveling at 90.0° with respect to the direction of a magnetic field of strength 4.50 mT experiences a magnetic forceof 7.50 X 10-17 N. The proton's  kinetic energy is:
A proton of mass mp=1.67×10−27 kgm​p​​=1.67×10​−27​​ kg and a charge of qp=1.60×10−19 Cq​p​​=1.60×10​−19​​ C is moving...
A proton of mass mp=1.67×10−27 kgm​p​​=1.67×10​−27​​ kg and a charge of qp=1.60×10−19 Cq​p​​=1.60×10​−19​​ C is moving through vacuum at a constant velocity of 10,000 m/s10,000 m/s directly to the east when it enters a region of uniform electric field that points to the south with a magnitude of ∣E⃗∣=∣​E​⃗​​∣=2520 N/C N/C . The region of uniform electric field is 5 mm wide in the east-west direction. How far (in meters) will the proton have been deflected towards the south by...
A charged particle of mass m = 4.6X10-8 kg, moving with constant velocity in the y-direction...
A charged particle of mass m = 4.6X10-8 kg, moving with constant velocity in the y-direction enters a region containing a constant magnetic field B = 2.3T aligned with the positive z-axis as shown. The particle enters the region at (x,y) = (0.79 m, 0) and leaves the region at (x,y) = 0, 0.79 m a time t = 409 μs after it entered the region. 1. With what speed v did the particle enter the region containing the magnetic...
At an instant in time, a proton (m = 1.67x10-27 kg and q = 1.6x10-19 C)...
At an instant in time, a proton (m = 1.67x10-27 kg and q = 1.6x10-19 C) has velocity, v = 1i + 2j + 3k Mm/s while it is in a magnetic field, B = 3i + 2j + 1k T. Find the acceleration of the proton at this instant.
A proton, with a charge Q = 1.60 × 10−19 Coulombs has an initial velocity as...
A proton, with a charge Q = 1.60 × 10−19 Coulombs has an initial velocity as shown below with a magnitude of v = 2.50 × 105 m/s. Take the proton mass to be M = 1.67 × 10−27 kg. The proton moves in a plane perpendicular to a 3.00 Tesla uniform magnetic field Calculate the radius, in meters, of the circular path followed by the proton. With respect to the magnetic field lines, are the orbits in the clockwise...
A proton (m = 1.67 x 10-27 kg) is placed a distance y above a long,...
A proton (m = 1.67 x 10-27 kg) is placed a distance y above a long, horizontal wire of linear charge density λ. The proton is then released from rest. If the magnitude of the initial acceleration of the proton is 0.52 x 10+7 m/s2, what is the value of λ (in C/m)? Take y = 40cm.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT