Question

It was shown in Example 21.11 (Section 21.5) in the textbook that the electric field due...

It was shown in Example 21.11 (Section 21.5) in the textbook that the electric field due to an infinite line of charge is perpendicular to the line and has magnitude E=λ/2πϵ0r. Consider an imaginary cylinder with a radius of r = 0.230 m and a length of l = 0.480 m that has an infinite line of positive charge running along its axis. The charge per unit length on the line is λ = 4.60 μC/m.

What is the electric flux through the cylinder due to this infinite line of charge?

What is the flux through the cylinder if its radius is increased to r= 0.515 m?

What is the flux through the cylinder if its length is increased to l= 0.765 m?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
10. A spherical conductor of radius R = 1.5cm carries the charge of 45μ, (a) What...
10. A spherical conductor of radius R = 1.5cm carries the charge of 45μ, (a) What is the charge density (ρ) of the sphere? (b) Calculate the electric field at a point r = 0.5cm from the center of the sphere. (c) What is the electric field on the surface of the sphere? 11. Two capacitors C1 and C2 are in series with a voltage V across the series combination. Show that the voltages V1 and V2 across C1 and...
What is the electric field at the origin due to a line of charge from x0...
What is the electric field at the origin due to a line of charge from x0 to ∞ along the positive x-axis with a uniform linear charge density (charge/length) of λ. Question 11 options: a) k e λ x 0 keλx0 {"version":"1.1","math":"keλx0"} b) x 0 k e λ x0keλ {"version":"1.1","math":"x0keλ"} c) k e λ x 0 keλx0 {"version":"1.1","math":"keλx0"} d)
Consider an infinitely long line of charge having uniform charge per unit length 5.4 µC/m. Determine...
Consider an infinitely long line of charge having uniform charge per unit length 5.4 µC/m. Determine the total electric flux through a closed right circular cylinder of length 1.7 m and radius 80 m that is parallel to the line charge, if the distance between the axis of the cylinder and the line of charge is 10 m. The permittivity of free space is 8.8542 × 10−12 C 2 /N · m2 . Answer in units of N · m2...
Find an expression for the electric potential V(s,φ) due to infinite line charge λ parrallel to...
Find an expression for the electric potential V(s,φ) due to infinite line charge λ parrallel to the z axis located in the (x,y) plane at (d,0). Take v = 0 at s = 0 . (b) show that your expression obeys the 2-d laplace equation in polar coordinates in the (x,y) plane. C) Show that V(s,φ) obeys the averaging principle for harmonic functions by computing its average value on a cirlce of radius s = R < d
A uniformly charged, straight filament 6.60 m in length has a total positive charge of 2.00...
A uniformly charged, straight filament 6.60 m in length has a total positive charge of 2.00 µC. An uncharged cardboard cylinder 2.10 cm in length and 10.0 cm in radius surrounds the filament at its center, with the filament as the axis of the cylinder. (a) Using reasonable approximations, find the electric field at the surface of the cylinder. (b) Using reasonable approximations, find the total electric flux through the cylinder.
The electric field at 5 cm from the center of a long copper rod of radius...
The electric field at 5 cm from the center of a long copper rod of radius 2 cm has a magnitude of 5 N/C and is directed outward from the axis of the rod. (a) How much charge per unit length (in C/m) exists on the copper rod? C/m (b) What would be the electric flux (in N · m2/C) through a cube of side 5 cm situated such that the rod passes through opposite sides of the cube perpendicularly?...
1. (a) Define a law of electrostatics in integral form that is used to compute the...
1. (a) Define a law of electrostatics in integral form that is used to compute the electrostatic field E due to a symmetric distribution of charge within a given volume. State the meaning of the terms in the defining equation. (b) A uniformly charged long cylinder of radius a and length L has total charge q inside its volume. What is the direction of the electric field at points outside the cylinder?    Find the electric field inside and outside...
A continuous distribution of linear charge exists along the entire length of the y-axis, and has...
A continuous distribution of linear charge exists along the entire length of the y-axis, and has a uniform linear charge density of λ = 45.0 pC/m = 45.0✕10-12 C/m. What is the net electric flux through the surface of a sphere of radius r = 3.20 m, if it is located at the following positions? εo = 8.854✕10-12 C2/(Nm2) (A) The sphere is centered on the origin. ΦE =_____ Nm2/C (B) The sphere is centered on the point x =...
An infinitely long solid insulating cylinder of radius a = 2 cm is positioned with its...
An infinitely long solid insulating cylinder of radius a = 2 cm is positioned with its symmetry axis along the z-axis as shown. The cylinder is uniformly charged with a charge density ρ = 27 μC/m3. Concentric with the cylinder is a cylindrical conducting shell of inner radius b = 14.8 cm, and outer radius c = 17.8 cm. The conducting shell has a linear charge density λ = -0.37μC/m. 1) What is Ey(R), the y-component of the electric field...
1.) How much heat is trasnferred in a process where a 2.35-mole sample of an ideal...
1.) How much heat is trasnferred in a process where a 2.35-mole sample of an ideal gas maintained at a temperature of 402K is compressed from 1.38 m3 to 0.206 m3, in kilojoules? 2.) What is the magnitude of the magnetic force (in N) on a charged particle (Q = 5.0 ?C) moving with a speed of 80x103 m/s in the positive x-direction at a point where Bx = 5.0 T, By = -4.0 T, and Bz = 3.0 T?...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT