Question

An inductor made as a solenoid of 300 turn with 5.00 cm long and 1.00 x10-4...

An inductor made as a solenoid of 300 turn with 5.00 cm long and 1.00 x10-4 m^2 cross section area is connected to a 75 resistor and 12 V battery. The switch is closed at time t = 0.
(a) What is the inductive time constant of the circuit?
(b) Calculate the current in the circuit 250 us after the switch is
closed.
(c) What is the magnitude and polarity of the back emf induced by
the inductor 250 us after the switch is closed?
(d) Calculate the energy stored in the inductor after one minute the
switch is closed.

Homework Answers

Answer #1

firsly find inductance, and put it into the formula of current.

In part(d) current is zero,so energy stored in inductor is zero.

Energy = (1/2)L(I^2)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A long solenoid is used as an inductor in an R-L circuit. The solenoid has 165/m...
A long solenoid is used as an inductor in an R-L circuit. The solenoid has 165/m and a cross-sectional radius of 0.14 meters. It is placed into a R-L circuit with a 18 Ohm resistor and a battery initially. The battery is removed, the initial current is 3 amps, and 8 milli-seconds after the battery has been removed, the voltage across the inductor is 7 volts. What is the length of the solenoid in meters?
In the circuit shown in the figure below, let L = 5.00 H, R = 7.90...
In the circuit shown in the figure below, let L = 5.00 H, R = 7.90 Ω, and e m f = 120 V. What is the self-induced emf 0.200 s after the switch is closed? ___________________V A rectangular circuit contains a battery of emf ℰ on its left side, with the positive terminal above the negative terminal. An open switch S is on its top side, an inductor L is on its right side, and a resistor R is...
A 24-V battery is connected in series with a resistor and an inductor, with R =...
A 24-V battery is connected in series with a resistor and an inductor, with R = 5.0 Ω and L = 5.0 H, respectively. (a) Find the energy stored in the inductor when the current reaches its maximum value.   J (b) Find the energy stored in the inductor one time constant after the switch is closed.
A 310 turn solenoid with a length of 23.0 cm and a radius of 1.60 cm...
A 310 turn solenoid with a length of 23.0 cm and a radius of 1.60 cm carries a current of 1.85 A. A second coil of four turns is wrapped tightly around this solenoid, so it can be considered to have the same radius as the solenoid. The current in the 310 turn solenoid increases steadily to 5.00 A in 0.900 s. (a) Use Ampere's law to calculate the initial magnetic field in the middle of the 310 turn solenoid....
A 24 V battery is connected in series with a resistor and an inductor, with R...
A 24 V battery is connected in series with a resistor and an inductor, with R = 11.0 Ω and L = 10.0 H, respectively. Find the energy stored in the inductor for the following situations: (a) when the current reaches its maximum value J (b) one time constant after the switch is closed J
Connect a battery to a solenoid A cylindrical solenoid 38 cm long with a radius of...
Connect a battery to a solenoid A cylindrical solenoid 38 cm long with a radius of 6 mm has 275 tightly-wound turns of wire uniformly distributed along its length (see the figure). Around the middle of the solenoid is a two-turn rectangular loop 3 cm by 2 cm made of resistive wire having a resistance of 135 ohms. One microsecond after connecting the loose wire to the battery to form a series circuit with the battery and a 20  resistor, what...
A 22-turn circular coil of radius 5.00 cm and resistance 1.00 ? is placed in a...
A 22-turn circular coil of radius 5.00 cm and resistance 1.00 ? is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 5.40 s. mV
a)Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current i=...
a)Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current i= 2 A and it has a diameter 2 cm and a length 5 m. Find the uniform magnetic field inside the solenoid. b) Insert a single circular coil at the center of the long ideal solenoid that is mentioned at part (a). Solenoid and coil are coaxial. Coil has diameter 0.5 cm. Now the current in the solenoid decreases steadily from 2 A to...
A 2.4 Henry inductor is connected in series with a 12.0 Volt direct current battery, a...
A 2.4 Henry inductor is connected in series with a 12.0 Volt direct current battery, a 6.0 Ohm resistor, and a switch. The switch is open so no current is flowing in the circuit. Explain what happens to the current once the switch is closed. Intelligently use "Faraday's law" and "Lenz's law" and "time constant" in your explanation. Describe what a graph of current versus time would look like, what it's value would be at time = 0, and what...
a) Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current...
a) Assume that there is a long ideal solenoid with 120 turns/cm. It carries a current i= 2 A and it has a diameter 2 cm and a length 5 m. Find the uniform magnetic field inside the solenoid. Select one: 150 mT 0,30 mT 2 mT 30 mT 9.5 μT b) Insert a single circular coil at the center of the long ideal solenoid that is mentioned at part (a). Solenoid and coil are coaxial. Coil has diameter 0.5...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT