Question

a 40 kg skater starts from rest at point a along a frictionless ramp as shown...

a 40 kg skater starts from rest at point a along a frictionless ramp as shown below. the height of the ramp from the floor at the point b is yb= 3m and the speed of the skater at b is 5.0m/s

the mechanical energy of the skater just before hitting the ground at point c

Homework Answers

Answer #1

By energy conservation,

Mechanical energy of the skater at point c (Tf) = Mechanical energy of the skater at point b (Ti)

Tf = Kinetic energy of skater at point b(KEi) + potential energy of skater at point b(PEi)

Tf = 0.5*m*v^2 + m*g*h

here, m = mass of skater = 40 kg

v = speed of skater at point b = 5.0 m/s

g = 9.81 m/s^2

h = height of point b = yb = 3 m

then, Tf = 0.5*40*5.0^2 + 40*9.81*3

Tf = 1677.2 J

In two significant figure:

Tf = 1.7*10^3 J

"Let me know if you have any query."

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp...
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp that makes an angle of 36.2 ^\circ ∘ below the horizontal. After it slides without friction down the entire 2.89 m length of the ramp, it begins to slide horizontally along a rough concrete surface with a coefficient of kinetic friction of \mu_kμ k = 0.503 until it slows to a complete stop. How far does the block slide horizontally along the concrete before...
A 50 kg skier starts from rest at a height ? = 40? above the end...
A 50 kg skier starts from rest at a height ? = 40? above the end of a launching ramp. Determine the launch speed of the skier (at the end of the ramp) if (a) there is no friction, or (b) If friction does -3000 J of work on the skier
A 1.55-kg block is launched by a spring and slides along a ramp as shown. The...
A 1.55-kg block is launched by a spring and slides along a ramp as shown. The spring has a spring constant of 1180 N/m and is compressed a distance, x, before being released. The block slides up a frictionless ramp of height, H=0.550 m, above where the block leaves the spring. At the top of the ramp it flies horizontally off the ramp. Just before leaving the ramp, the kinetic energy of the block is 8.54 J. After leaving the...
A block (4 kg) starts from rest and slides down a frictionless ramp #1 of height...
A block (4 kg) starts from rest and slides down a frictionless ramp #1 of height 9 m. The block then slides a horizontal distance of 1 m on a rough surface with kinetic coefficient of friction μk = 0.5. Next, it slides back up another frictionless ramp #2. Find the following numerical energy values: Initial gravitational potential energy on Ramp #1: U1G =  J Tries 0/3 Kinetic energy at bottom of Ramp #1 before traveling across the rough surface: K...
A 30-kg crate starts from rest, slides down a frictionless incline and then along a rough...
A 30-kg crate starts from rest, slides down a frictionless incline and then along a rough horizontal surface until it comes to rest. The coefficient of kinetic friction between the horizontal surface and the crate is 0.27. If the crate’s initial height is 9 m, find the distance it travels on the horizontal surface.
A mass 1.9 kg is initially at rest at the top of a 2meter high ramp....
A mass 1.9 kg is initially at rest at the top of a 2meter high ramp. It slides down the frictionless ramp and collides elastically with an unknown mass which is initially at rest. After colliding with the unknown mass, the 1.9 kg mass recoils and achieves a maximum height (altitude) of only 0.2 m going back up the frictionless ramp. (HINT: Solving each part in sequence will guide you to a solution without doing a lot of algebra.) 1.Considering...
A 10 kg box slides down a long, frictionless incline of angle 30°. It starts from...
A 10 kg box slides down a long, frictionless incline of angle 30°. It starts from rest at time t = 0 at the top of the incline at a height of 18 m above ground. (a) What is the original potential energy of the box relative to the ground? ---J (b) From Newton's laws, find the distance the box travels in 1 s and its speed at t = 1 s. ---m ---m/s (c) Find the potential energy and...
A roller coaster car of mass 900 kg when released from rest at point A (height...
A roller coaster car of mass 900 kg when released from rest at point A (height h above the ground) slides along the track and inside the loop of radius 15.0 m. The car never loses contact with the track. Draw below a free body diagram for the car at the bottom of the loop. If the speed of the car at the bottom of the loop (point B) is 25 m/s, what is the normal force at that point?...
A 5.0 kg box slides down a 5.0 m high frictionless hill, starting from rest, across...
A 5.0 kg box slides down a 5.0 m high frictionless hill, starting from rest, across a 2.0 m wide horizontal surface, then hits a horizontal spring with spring constant 500 N/m. The ground under the spring is frictionless, but the 2.0 m wide horizontal surface is rough with a coefficient of kinetic friction of 0.25. a. What is the speed of the box just before reaching the rough surface? b. What is the speed of the box just before...
An Amazon package of mass ? = 163 kg is released from rest at point A...
An Amazon package of mass ? = 163 kg is released from rest at point A and slides on the frictionless track shown. Point A is ?? = 7.90 ? above the ground. Point B is ?? = 2.50 ? above the ground. Ignore air resistance. a) Determine the potential energy of the Amazon package at Point A relative to the ground. b) Determine the speed of the Amazon package at Point B. c) The Amazon package hits the ground...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT