Question

A grounded conducting sphere of radius R is centered at the origin and is in a...

A grounded conducting sphere of radius R is centered at the origin and is in a uniform electric field E = E0 z. Find an expression for the potential outside the sphere, i.e. for r > R. Find an expression for the induced charge density on the surface of the sphere . If the sphere is now disconnected from ground and there is an additional charge Q placed on the sphere, what is the new expression for the potential?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A conducting sphere of radius "a" is placed in a uniform electrostatic field E. If the...
A conducting sphere of radius "a" is placed in a uniform electrostatic field E. If the sphere is well insulated, find the expressions for potential and electric fields V and E at point P lying outside the sphere. Also obtain the expression for the induced surface charge density and show that it forms a dipole distribution. Specify boundary conditions.
Suppose a conducting sphere, radius r2, has a spherical cavity of radius r1 centered at the...
Suppose a conducting sphere, radius r2, has a spherical cavity of radius r1 centered at the sphere's center. At the center of the sphere is a point charge -4Q. Assuming the conducting sphere has a net charge +Q determine the electric field,magnitude and direction, in the following situations: a) From r = 0 to r = r1. b) From r = r1 to r = r2. c) Outside of r = r2 d) find the surface charge density (charge per...
A solid sphere, radius R, is centered at the origin. The “northern” hemisphere carries a uniform...
A solid sphere, radius R, is centered at the origin. The “northern” hemisphere carries a uniform charge density ρ0, and the “southern” hemisphere a uniform charge density −ρ0. Find the approximate field E(r,θ) for points far from the sphere (r ≫ R).
An uncharged conducting sphere of radius 2b is centered on the origin and has a spherical...
An uncharged conducting sphere of radius 2b is centered on the origin and has a spherical cavity of radius b that is also centered on the origin. 1. If a charge of +q is at the origin, explain why the surfaces at r=2b and r=b each have a net charge of +q and −q, respectively, and not, say, +q/2 and −q/2. 2. Repeat this question for the case where the inner surface of the cavity is not spherical (but the...
Consider a grounded conducting sphere of radius a in the presence of a point charge q...
Consider a grounded conducting sphere of radius a in the presence of a point charge q a distance d away from the center of the sphere. a)Show that the electric field E is everywhere normal to the surface of the sphere. b)Calculate the induced charge per unit area on the surface of the sphere. c)Show that the total induced charge is -qa/d. d)Calculate the total force between the point charge and the sphere. e)Show that your solution satisfies Laplace’s equation.
A perfectly conducting sphere with radius a is placed in a uniform electric field Eo (a)...
A perfectly conducting sphere with radius a is placed in a uniform electric field Eo (a) What is the surface charge density on the sphere? (b) What is the induced dipole moment of the sphere?
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge...
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge of q = 12µC. it is enclosed by a thin conducting concentric spherical shell of inner radius R, the net charge on the shell is zero. a) find the magnitude of the electrical field E1  inside the sphere (r < R) at the distance r1 = 3.0 cm from the center. b) find the magnitude of the electric field E2 outside the shell at the...
For a charged hollow metal sphere with total charge Q and radius R centered on the...
For a charged hollow metal sphere with total charge Q and radius R centered on the origin: True False  the charge is on the inside surface. True False  the field for r > R will be the same as the field of a point charge, Q, at the origin. True False  the field on the outside is perpendicular to the surface. True False  inside the metal the field is strongest. True False  the field inside the shell is zero. True False  only positive charges can be...
For a charged hollow metal sphere with total charge Q and radius R centered on the...
For a charged hollow metal sphere with total charge Q and radius R centered on the origin: True False  the field on the outside is perpendicular to the surface. True False  the field inside the shell is zero. True False  the field for r > R will be the same as the field of a point charge, Q, at the origin. True False  the charge is on the inside surface. True False  only positive charges can be on the outside surface. True False  inside the metal...
A hollow, conducting sphere with an outer radius of 0.260 m and an inner radius of...
A hollow, conducting sphere with an outer radius of 0.260 m and an inner radius of 0.200 m has a uniform surface charge density of +6.47 × 10−6 C/m2. A charge of -0.400 μC is now introduced into the cavity inside the sphere. a)What is the new charge density on the outside of the sphere? b)Calculate the strength of the electric field just outside the sphere c)What is the electric flux through a spherical surface just inside the inner surface...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT