Question

A particle is at the position (x,y,z)=(1.0,2.0,3.5)m. It is traveling with a vector velocity (−5.2,2.6,−3.0)m/s. Its...

A particle is at the position (x,y,z)=(1.0,2.0,3.5)m. It is traveling with a vector velocity (−5.2,2.6,−3.0)m/s. Its mass is 3.8 kg .

(PART A)What is its vector angular momentum about the origin? Find the x-component. (Express your answer using two significant figures.)

(PART B) Find the y-component. Express your answer using two significant figures.

(PART C) Find the z -component. Express your answer using two significant figures.

Homework Answers

Answer #1

if any inquires please comment and if you satisfied with my answer please give me a like.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle is at the position (x,y,z)=(1.3,2.5,3.3)m(x,y,z)=(1.3,2.5,3.3)m. It is traveling with a vector velocity (−5.1,3.0,−3.1)m/s(−5.1,3.0,−3.1)m/s. Its...
A particle is at the position (x,y,z)=(1.3,2.5,3.3)m(x,y,z)=(1.3,2.5,3.3)m. It is traveling with a vector velocity (−5.1,3.0,−3.1)m/s(−5.1,3.0,−3.1)m/s. Its mass is 3.6 kg A)What is its vector angular momentum about the origin? Find the xx-component. B)Find the yy-component. C)Find the zz-component..
A velocity vector 55 ∘ above the positive x-axis has a y-component of 11 m/s ....
A velocity vector 55 ∘ above the positive x-axis has a y-component of 11 m/s . Part A What is the value of its x-component? Express your answer using two significant figures. vx =   m/s   SubmitRequest Answer
At time t = 0, a 4.0 kg particle with velocity v with arrow = (5.0...
At time t = 0, a 4.0 kg particle with velocity v with arrow = (5.0 m/s) i hat − (6.0 m/s) j is at x = 4.0 m, y = 2.0 m. It is pulled by a 6.0 N force in the negative x direction. (a) What is the angular momentum of the particle about the origin? (Express your answer in vector form.) (b) What torque about the origin acts on the particle? (Express your answer in vector form.)...
At time t = 4 sec, a particle of mass M = 4.5 kg is at...
At time t = 4 sec, a particle of mass M = 4.5 kg is at the position (x,y,z) = (4,4,6) m and has velocity (2,1,-2) m/s. 1)What is the x component of the particle's angular momentum about the origin? 2)What is the y component of the particle's angular momentum about the origin? 3)What is the z component of the particle's angular momentum about the origin? 4)Now an identical particle is placed at (x,y,z) = (-4,-4,-6) m, with velocity (-2,-1,2)...
At time t = 11.5 sec, a particle of mass M = 5 kg is at...
At time t = 11.5 sec, a particle of mass M = 5 kg is at the position (x,y,z) = (4,4,6) m and has velocity (2,1,-2) m/s. 1) What is the x component of the particle's angular momentum about the origin? 2) What is the y component of the particle's angular momentum about the origin? 3) What is the z component of the particle's angular momentum about the origin? 4) Now an identical particle is placed at (x,y,z) = (-4,-4,-6)...
IP A particle passes through the origin with a velocity of (6.8m/s)y^. Part A If the...
IP A particle passes through the origin with a velocity of (6.8m/s)y^. Part A If the particle's acceleration is (−5.0m/s2)x^, what are its x and y positions after 5.0 s ? x, y =   m Part B If the particle's acceleration is (−5.0m/s2)x^, what are vx and vy after 5.0 s ? Express your answers using two significant figures separated by a comma. vx, vy =   m/s  
A particle with a charge of 37 μC moves with a speed of 77 m/s in...
A particle with a charge of 37 μC moves with a speed of 77 m/s in the positive x direction. The magnetic field in this region of space has a component of 0.42 T in the positive y direction, and a component of 0.87 T in the positive z direction. Part A: What is the magnitude of the magnetic force on the particle? Express your answer using two significant figures. Part B: What is the direction of the magnetic force...
A 3.65 kg particle with velocity v→=(8.97m/s)î-(4.43m/s)ĵ is at x = 7.38 m, y = 5.02...
A 3.65 kg particle with velocity v→=(8.97m/s)î-(4.43m/s)ĵ is at x = 7.38 m, y = 5.02 m. It is pulled by a 2.09 N force in the negative x direction. About the origin, what are (a) the particle's angular momentum, (b) the torque acting on the particle, and (c) the rate at which the angular momentum is changing?
A skateboarder travels on a horizontal surface with an initial velocity of 3.2 m/s toward the...
A skateboarder travels on a horizontal surface with an initial velocity of 3.2 m/s toward the south and a constant acceleration of 2.2 m/s2 toward the east. Let the x direction be eastward and the y direction be northward, and let the skateboarder be at the origin at t=0. What is her x position at t=0.80s? What is her y position at t=0.80s? What is her x velocity component at t=0.80s? What is her y velocity component at t=0.80s? Express...
A soccer ball of mass 0.30 kg is rolling with velocity 0, 0, 3.0 m/s, when...
A soccer ball of mass 0.30 kg is rolling with velocity 0, 0, 3.0 m/s, when you kick it. Your kick delivers an impulse of magnitude 1.6 N · s in the −x direction. The net force on the rolling ball, due to the air and the grass, is 0.28 N in the direction opposite to the direction of the ball's momentum. Using a time step of 0.5 s, find the position of the ball at a time 1.5 s...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT