Question

The wheels of a wagon can be approximated as the combination of a thin outer hoop,...

The wheels of a wagon can be approximated as the combination of a thin outer hoop, of radius rh = 0.527 m and mass 4.70 kg, and two thin crossed rods of mass 9.52 kg each. You would like to replace the wheels with uniform disks that are 0.0462 m thick, made out of a material with a density of 5530 kilograms per cubic meter. If the new wheel is to have the same moment of inertia about its center as the old wheel about its center, what should the radius of the disk be?

Homework Answers

Answer #1

here,

radius of wheel, rw = 0.527 m

mass of wheel, mw = 4.70 kg

mass of thin rods, m = 9.52 kg each

thickness if disks, t = 0.0462 m

density of material, rho = 5530 kg/m^3

Moment of inertia of wheel
Iw = mw*rw^2 + 2/3 * m * (rw)^2
Iw = 4.70 * 0.527^2 + 2/3 * 9.52 * (0.527)^2
Iw = 3.068 kg.m^2

moment of inertia of disk
Id = 0.5 * mass of disk * r^2
Id = 0.5 * (rho * pi * r^2 * t) * r^2

Since inertia is same for both of them :

3.068 = 0.5 * (rho * pi * r^2 * t) * r^2

3.068 = 0.5 * (5530 * pi * r^2 * 0.0462) * r^2

radius of disk, r = 0.296 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The wheels of a wagon can be approximated as the combination of a thin outer hoop,...
The wheels of a wagon can be approximated as the combination of a thin outer hoop, of radius rh = 0.156 m and mass 4.70 kg, and two thin crossed rods of mass 9.09 kg each. You would like to replace the wheels with uniform disks that are 0.0525 m thick, made out of a material with a density of 7370 kilograms per cubic meter. If the new wheel is to have the same moment of inertia about its center...
The wheels of a wagon can be approximated as the combination of a thin outer hoop,...
The wheels of a wagon can be approximated as the combination of a thin outer hoop, of radius ?h=0.209 mrh=0.209 m and mass 4.32 kg4.32 kg, and two thin crossed rods of mass 9.52 kg9.52 kg each. A farmer would like to replace his wheels with uniform disks ?d=0.0525 mtd=0.0525 m thick, made out of a material with a density of 6450 kg6450 kg per cubic meter. If the new wheel is to have the same moment of inertia about...
Calculate the final speed of a wheel that starts from rest and rolls down a 12.00-m-high...
Calculate the final speed of a wheel that starts from rest and rolls down a 12.00-m-high incline. The wheel can be approximated to a 0.9 kg (MH) hoop spinning about its central axis with a radius (RH) of 0.35m and three 0.2 kg (MR) rods of 0.35 m (LR) length rotating from the axis. Assume the total mass of the wheel is comprised of just a hoop and 3 rods and assume the radius of rotation is 0.35m.
Four objects—a hoop, a solid cylinder, a solid sphere, and a thin, spherical shell—each have a...
Four objects—a hoop, a solid cylinder, a solid sphere, and a thin, spherical shell—each have a mass of 4.06 kg and a radius of 0.253 m. (a) Find the moment of inertia for each object as it rotates about the axes shown in this table. hoop     ___ kg · m2 solid cylinder     ___ kg · m2 solid sphere     ___ kg · m2 thin, spherical shell     ___ kg · m2 (b) Suppose each object is rolled down a ramp. Rank the...
The figure shows a rigid assembly of a thin hoop (of mass m = 0.14 kg...
The figure shows a rigid assembly of a thin hoop (of mass m = 0.14 kg and radius R = 0.11 m) and a thin radial rod (of length L = 2R and also of mass m = 0.14 kg). The assembly is upright, but we nudge it so that it rotates around a horizontal axis in the plane of the rod and hoop, through the lower end of the rod. Assuming that the energy given to the assembly in...
The figure shows a rigid assembly of a thin hoop (of mass m = 0.23 kg...
The figure shows a rigid assembly of a thin hoop (of mass m = 0.23 kg and radius R = 0.16 m) and a thin radial rod (of length L = 2R and also of mass m = 0.23 kg). The assembly is upright, but we nudge it so that it rotates around a horizontal axis in the plane of the rod and hoop, through the lower end of the rod. Assuming that the energy given to the assembly in...
Wagon wheel. While working on your latest novel about settlers crossing the Great Plains in a...
Wagon wheel. While working on your latest novel about settlers crossing the Great Plains in a wagon train, you get into an argument with your co-author regarding the moment of inertia of an actual wooden wagon wheel. The 70-kg wheel is 120-cm in diameter and has heavy spokes connecting the rim to the axle. Your co-author claims that you can approximate using I = MR2(like for a hoop) but you anticipate I will be significantly less than that because of...
provides one model for solving this type of problem. Two wheels have the same mass and...
provides one model for solving this type of problem. Two wheels have the same mass and radius of 4.8 kg and 0.38 m, respectively. One has (a) the shape of a hoop and the other (b) the shape of a solid disk. The wheels start from rest and have a constant angular acceleration with respect to a rotational axis that is perpendicular to the plane of the wheel at its center. Each turns through an angle of 12 rad in...
A bicycle and its rider have a total mass of 83.0 kg. Each of its wheels...
A bicycle and its rider have a total mass of 83.0 kg. Each of its wheels can be modeled as a thin hoop with mass 1.32 kg and diameter of 70.0 cm. When the brakes are applied, two brake pads squeeze the rims of each wheel. Assume that the four brake pads exert normal forces on the wheels that are equal and constant in magnitude. The coefficient of kinetic friction between a brake pad and a wheel is 0.900. The...
A bicycle and its rider have a total mass of 70.0 kg. Each of its wheels...
A bicycle and its rider have a total mass of 70.0 kg. Each of its wheels can be modeled as a thin hoop with mass 1.26 kg and diameter of 70.0 cm. When the brakes are applied, two brake pads squeeze the rims of each wheel. Assume that the four brake pads exert normal forces on the wheels that are equal and constant in magnitude. The coefficient of kinetic friction between a brake pad and a wheel is 0.900. The...