Question

Which of the following make the separation between fringes greater in the two slit interference experiment?...

Which of the following make the separation between fringes greater in the two slit interference experiment? (Select all that apply.)

Wider slits.Smaller separation of the two slits.Larger separation of the two slits.Narrower slits.

PRACTICE IT

Use the worked example above to help you solve this problem. A screen is separated from a double-slit source by 1.22 m. The distance between the two slits is 0.0292 mm. The second-order bright fringe (m = 2) is measured to be 4.60 cm from the centerline.

(a) Determine the wavelength of the light.
nm

(b) Determine the distance between adjacent bright fringes.
cm

EXERCISEHINTS:  GETTING STARTED  |  I'M STUCK!

Suppose the same experiment is run with a different light source. If the first-order maximum is found at 2.00 cm from the centerline, what is the wavelength of the light?
λ =  nm

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light of wavelength λ= 460 nm  falls on the slits from a distant source. The distance between adjacent bright fringes is 6.2 mm. A) Find the distance between the two slits B) Determine the distance to the 6th order dark fringe from the central fringe
A double slit experiment produces an interference pattern on a screen 2.8 m away from the...
A double slit experiment produces an interference pattern on a screen 2.8 m away from the slits. Light of wavelength = 480 nm falls on the slits from a distant source. The distance between adjacent bright fringes is 5.8 mm. a) find the distance between the two slits. Express your answer using 3 significant figures. b) determine the distance to the 6th order dark fringe from the central fringe. Express your answer using three significant figures.
A double-slit experiment produces an interference pattern on a screen 2.8 m m away from slits....
A double-slit experiment produces an interference pattern on a screen 2.8 m m away from slits. Light of wavelength λ= 520 nm n m  falls on the slits from a distant source. The distance between adjacent bright fringes is 7.2 mm m m . Part A Find the distance between the two slits. Express your answer using three significant figures. Part B Determine the distance to the 5th order dark fringe from the central fringe. Express your answer using...
In a double-slit experiment, the second-order bright fringe is observed at an angle of 0.51°. If...
In a double-slit experiment, the second-order bright fringe is observed at an angle of 0.51°. If the slit separation is 0.11 mm, then what is the wavelength of the light? _____??? Two narrow slits are illuminated by a laser with a wavelength of 514 nm. The interference pattern on a screen located x = 4.60 m away shows that the third-order bright fringe is located y = 9.00 cm away from the central bright fringe. Calculate the distance between the...
In a double-slit experiment, the distance between slits is 0.5.0 mm and the slits are 2.0...
In a double-slit experiment, the distance between slits is 0.5.0 mm and the slits are 2.0 m from the screen. Two interference patterns can be seen on the screen: one due to light of wavelength 480 nm, and the other due to light of wavelength 600 nm. What is the separation on the screen between the second -order (m = 3) bright fringes of the two interference patterns?(show the ray diagrams)
A double slit interference experiment is submerged in alcohol (n = 1.3736). On the detecting screen...
A double slit interference experiment is submerged in alcohol (n = 1.3736). On the detecting screen the distance between the zeroth and first order bright fringes is 1.52 cm. The distance to the screen from the slits is 2.7225 meters. The light has a wavelength in air of 615.6 nm. Find the distance between the slits.
In a double-slit interference experiment, the slit separation is 2.29 μm, the light wavelength is 532...
In a double-slit interference experiment, the slit separation is 2.29 μm, the light wavelength is 532 nm, and the separation between the slits and the screen is 4.42 m. (a) What is the angle between the center and the third side bright fringe? If we decrease the light frequency to 94.8% of its initial value, (b) does the third side bright fringe move along the screen toward or away from the pattern's center and (c) how far does it move?
In Young’s Double Slit Experiment, light of wavelength 550 nm illuminates two slits which are separated...
In Young’s Double Slit Experiment, light of wavelength 550 nm illuminates two slits which are separated by 0.500 mm. The separation between adjacent bright fringes on a screen 3.00 m from the slits is?
A viewing screen is separated from a double-slit source by 1.7m. The distance between the two...
A viewing screen is separated from a double-slit source by 1.7m. The distance between the two slits is 0.035mm. The second order bright fringe (m=2) is 5.1cm from the center line. (a) Determine the wavelength of the light. (b) Calculate the distance between adjacent bright fringes.
A double-slit experiment uses coherent light of wavelength 633 nm with a slit separation of 0.100...
A double-slit experiment uses coherent light of wavelength 633 nm with a slit separation of 0.100 mm and a screen placed 2.0 m away. (a) How wide on the screen is the central bright fringe? (b) What is the distance on the screen between first-order and second-order bright fringes? (c) What is the angular separation (in radians) between the central maximum and the first-order maximum?   
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT