Question

The three forces shown in the figure below act on a particle (with F1 = 46.0...

The three forces shown in the figure below act on a particle (with F1 = 46.0 N, F2 = 59.0 N, θ1 = 61.0°, and θ2 = 29.0°). If the particle is in translational equilibrium, find F3, the magnitude of force 3 and the angle θ3.

Homework Answers

Answer #1

The figure is not shown here. But I will try to explain.

The forces are given as,

F1 = 46.0 N,

F2 = 59.0 N,

θ1 = 61.0°,

and θ2 = 29.0°

I think the the first two are in the same quadrant since the angles are less than 900.

F3cosθ3 = F1cosθ + F2 cosθ1
=>F3cosθ3 = 46cos610 + 59cos290
=>F3cosθ3 = 73.90 ----------------(i)
& F3sinθ3 = F1sinθ1- F2sinθ2
=>F3sinθ3 = 46sin610 - 59sin290
=>F3sinθ3 = 11.63 --------------(ii)  
=>F3 = [(73.9)2 + (11.63)2]
=>F3 = 74.8 Newton
& By (ii)/(i):-
=>θ =tan-1( 11.63/73.9 )= 8.92

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Three astronauts, propelled by jet backpacks, push and guide a 124 kg asteroid toward a processing...
Three astronauts, propelled by jet backpacks, push and guide a 124 kg asteroid toward a processing dock, exerting the forces shown in the figure, with F1 = 32 N, F2 = 53 N, F3 = 43 N, θ1 = 30°, and θ3 = 60°. What is the (a) magnitude and (b) angle (measured relative to the positive direction of the x axis in the range of (-180°, 180°]) of the asteroid's acceleration?
Two forces F1 and F2 act on an object. Each force is specified as an ordered...
Two forces F1 and F2 act on an object. Each force is specified as an ordered pair: its magnitude in Newtons and an angle measured in degrees counter-clockwise from the positive x-axis. Let F1 = (27.0 N, ∠115° )and F2 = (83.0 N, ∠240° ). Calculate the magnitude the vector F1 - F2. Include three significant figures in your answer. (If the last digit is a zero, Canvas will not display it but that's OK.) Please HELP!
A force table applies three forces to a ring in the center of the table. When...
A force table applies three forces to a ring in the center of the table. When the forces are balanced, the ring is stationary in the center of the table. The net force equation F1+F2+F3=Fnet becomes F1+F2+F3=0 since a stationary object has no net force acting on it. This equation is true for the cartesian components as well: F1x+F2x+F3x=0 F1y+F2y+F3y=0 For each of the three problems below, calculate the force F3 that balances the table with the given F1 and...
A thin rod of length L=2.0 m can rotate freely about a pin that is located...
A thin rod of length L=2.0 m can rotate freely about a pin that is located a distance x=0.44 m from one end. Two forces act on opposite ends of the rod. Force F1 =10.2 N pushes at an angle θ1 =119.3° with respect to the rod (a distance x from the pivot point). Force F2 =5.0 N pushes on the opposite end at an angle θ2 =68.5° with respect to the rod as shown in the figure. Find the...
Three forces act on an object (at the origin of a rectangular coordinate system). Force one,...
Three forces act on an object (at the origin of a rectangular coordinate system). Force one, F1, has a magnitude of 5.81 N and a direction Theta1 = 77.0 degrees, force two, F2, has a magnitude of 4.88 N and a direction of Theta2, = 156 degrees, and a force three F3, has a magnitude of 4.52 N and a direction of Theta 3 = 289 degrees. add these three vectors using the component method of vector addition. Call the...
The two forces F⃗ 1 and F⃗ 2 shown in the figure (Figure 1) (looking down)...
The two forces F⃗ 1 and F⃗ 2 shown in the figure (Figure 1) (looking down) act on a 16.0-kg object on a frictionless tabletop. Part A If F1=14.0 N and F2=21.0 N , find the magnitude of the net force on the object for (a). F =   N   SubmitRequest Answer Part B Find the direction of the net force on the object for (a). θ =   ∘ from the +x axis SubmitRequest Answer Part C Find the magnitude of...
A 200 kg block has three forces applied to it at the same time: F1 =...
A 200 kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0°, F2= 150 N force at 95.0°, and F3 = 75.0 N force at 206.0°. (All angles are measured counterclock- wise from the positive x -direction.) There is no gravitational force.             a.         Find the x and y components of the net force on the block. b.         Find the magnitude and direction of the net force. c.         The block was initially at rest; after...
A 200 kg block has three forces applied to it at the same time: F1 =...
A 200 kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0°, F2= 150 N force at 95.0°, and F3 = 75.0 N force at 206.0°. (All angles are measured counterclock- wise from the positive x -direction.) There is no gravitational force.             a.         Find the x and y components of the net force on the block.             b.         Find the magnitude and direction of the net force.             c.         The block was initially at rest; after...
A 200 kg block has three forces applied to it at the same time: F1 =...
A 200 kg block has three forces applied to it at the same time: F1 = 30.0 N force at 40.0°, F2= 150 N force at 95.0°, and F3 = 75.0 N force at 206.0°. (All angles are measured counterclock- wise from the positive x -direction.) There is no gravitational force.             a.         Find the x and y components of the net force on the block.             b.         Find the magnitude and direction of the net force.             c.         The block was initially at rest; after...
PLEASE ANSWER ALL 3 PROBLEMS! (1) Only two horizontal forces act on a 3.0 kg body...
PLEASE ANSWER ALL 3 PROBLEMS! (1) Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 9.0 N, acting due east, and the other is 8.8 N, acting 52° north of west. What is the magnitude of the body's acceleration? (2) Two horizontal forces act on a 1.8 kg chopping block that can slide over a frictionless kitchen counter, which lies in an xy plane. One force is F1 =...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT