Question

A hydrogen atom is in its ground state (ni = 1) when a photon impinges upon...

A hydrogen atom is in its ground state

(ni = 1)

when a photon impinges upon it.

The atom absorbs the photon, which has precisely the energy required to raise the atom to the

nf = 3

state.

(a)

What was the photon's energy (in eV)?

eV

(b)

Later, the atom returns to the ground state, emitting one or more photons in the process. Which of the following energies describes photons that might be emitted thus? (Select all that apply.)

10.2 eV 12.1 eV 1.89 eV 13.6 eV

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A hydrogen atom in the ground state absorbs a 12.75 eV photon. Immediately after the absorption,...
A hydrogen atom in the ground state absorbs a 12.75 eV photon. Immediately after the absorption, the atom undergoes a quantum jump to the next-lowest energy level. What is the wavelength of the photon emitted in this quantum jump? Express your answer using four significant figures. I've seen this question before, but I'm looking the wavelength, not the energy, or n. Thanks!
A ground state hydrogen atom absorbs a photon light having a wavelength of 92.57 nm. It...
A ground state hydrogen atom absorbs a photon light having a wavelength of 92.57 nm. It then gives off a photon having a wavelength of 1944 nm. What is the final state of the hydrogen atom? I got Nf=1.14 and it wasn't right
Q6] A hydrogen atom transitions from the ni = 5 state down to the ground state....
Q6] A hydrogen atom transitions from the ni = 5 state down to the ground state. In the process it emits a photo of light. The photon then strikes a photo-electric material with a work function of Wo = 7.5eV . a) What is the wavelength of the photon emitted from the transition of the hydrogen atom? b) What is the kinetic energy of the electron ejected from the photo-electric material?
Consider the following four transitions in a hydrogen atom. (i) ni = 6, nf = 9...
Consider the following four transitions in a hydrogen atom. (i) ni = 6, nf = 9 (ii) ni = 6, nf = 12 (iii) ni = 10, nf = 12 (iv) ni = 9, nf = 6 (a) Give the wavelength of the longest-wavelength photon that can be emitted or absorbed by these transitions. m (b) Give the wavelength of the shortest-wavelength photon that can be emitted or absorbed by these transitions. m (c) For which of these transitions does...
A ground state hydrogen atom absorbs a photon of light having a wavelength of 92.27 nm....
A ground state hydrogen atom absorbs a photon of light having a wavelength of 92.27 nm. It then gives off a photon having a wavelength of 383.4 nm. What is the final state of the hydrogen atom? Values for physical constants can be found here. nf= please try to show solution
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom...
Answer the following questions using the Bohr model of the hydrogen atom. a) A hydrogen atom is the n = 3 excited state when its electron absorbs a photon of energy 4.40 eV. Draw a diagram roughly to scale, of relevant energy levels for this situation. Make sure to show and label the initial energy of the H atom in the n=3 state, the energy level at which this atom loses its electron, and kinetic energy of the electron. b)What...
A hydrogen atom (Z = 1) is in the third excited state, and a photon is...
A hydrogen atom (Z = 1) is in the third excited state, and a photon is either emitted or absorbed. Determine (a) the quantum number nf of the final state (b) the energy of the photon when the photon is emitted with the shortest possible wavelength (c) the quantum number nf of the final state (d) the energy of the photon when the photon is emitted with the longest possible wavelength (e) the quantum number nf of the final state...
A hydrogen atom transitions from the n = 6 excited state to the n = 3...
A hydrogen atom transitions from the n = 6 excited state to the n = 3 excited state, emitting a photon. a) What is the energy, in electron volts, of the electron in the n = 6 state? How far from the nucleus is the electron? b) What is the energy, in electron volts, of the photon emitted by the hydrogen atom? What is the wavelength of this photon? c) How many different possible photons could the n = 6...
The electron in a hydrogen atom falls from an excited energy level to the ground state...
The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 656.5 nm and 121.6 nm (So the in the first step the 656.5 nm photon is emitted and in the second step the 121.6 nm photon is emitted). What is the principal quantum number (ni) of the initial excited energy level from which the electron falls?
A hydrogen atom is initially at the ground state and then absorbs energy 13.06 eV. The...
A hydrogen atom is initially at the ground state and then absorbs energy 13.06 eV. The excited state is unstable, and it tends to finally return to its ground state. 8% (a) How many possible wavelengths will be emitted as the atom returns to its ground state? (also draw a diagram of energy levels to illustrate your answer) Answer: (number) ___________ (b) Calculate the longest wavelength emitted. Answer: _________
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT