A proton with an initial speed of 1.82 ✕ 108 m/s in the +x direction collides elastically with another proton initially at rest. The first proton's velocity after the collision is 1.454 ✕ 108 m/s at an angle of 37.0° with the +x-axis.
What is the velocity (magnitude and direction) of the second proton after the collision? magnitude m/s
direction ? ° counterclockwise from the +x-axis
u1 = 1.82 x 108 m/s ; v1 = 1.454 x 108 m/s at = 37 deg
Let v2 be the vel of second proton and theta2 be the angle.
Let, the ball be moving along +X initially
(a)From the convervation of vertical momentum,
m1 v1 sin1 - m2 v2 sin2= 0
since m1 = m2
v1 sin1 = v2 sin2
v2 sin2 = 1.454 x 108 m/s x sin37 = 0.875 x 108 m/s
v2 sin 2 = 0.875 x 108 m/s (1)
From conservation of horizontal momentum
m1 u1 = m2 v2 cos 2 + m1 v1 cos 1
1.82 x 108 = v2 cos2 + 1.454 x 108 x cos37
v2 cos2 = 0.659 x 108 (2)
Dividing (1)/(2)
sin2 / cos2 = 0.875 x 108 / 0.659 x 108
2 = 53.02
v2 sin 2 = 0.875 x 108 m/s
v2 = 0.875 x 108 / sin53.02 = 1.095 x 108 m/s
Hence, v2 = 1.095 x 108 m/s and = 53.02 deg
Get Answers For Free
Most questions answered within 1 hours.