Question

A particle moves along the x axis. It is initially at the position 0.230 m, moving...

A particle moves along the x axis. It is initially at the position 0.230 m, moving with velocity 0.200 m/s and acceleration -0.420 m/s2. Suppose it moves with constant acceleration for 5.30 s.

(a) Find the position of the particle after this time. m

(b) Find its velocity at the end of this time interval. m/s We take the same particle and give it the same initial conditions as before. Instead of having a constant acceleration, it oscillates in simple harmonic motion for 5.30 s around the equilibrium position x = 0. Hint: the following problems are very sensitive to rounding, and you should keep all digits in your calculator.

(c) Find the angular frequency of the oscillation. Hint: in SHM, a is proportional to x. /s

(d) Find the amplitude of the oscillation. Hint: use conservation of energy. m

(e) Find its phase constant ϕ0 if cosine is used for the equation of motion. Hint: when taking the inverse of a trig function, there are always two angles but your calculator will tell you only one and you must decide which of the two angles you need. rad

(f) Find its position after it oscillates for 5.30 s. m

(g) Find its velocity at the end of this 5.30 s time interval. m/s

Homework Answers

Answer #1

a) x = xo + u*t + 0.5*a*t^2

= 0.23 + 0.2*5.3 + 0.5*(-0.42)*5.3^2

= -4.61 m

b) v = u + a*t

= 0.2 + (-0.42)*5.3

= -2.03 m/s

c) F = k*x

m*a = k*x

a/x = k/m

we know, angular frequency, w = sqrt(k/m)

= sqrt(a/x)

= sqrt(0.42/0.23)

= 1.35 rad/s

d) F = -k*x
m*a = -k*x

k = -m*a/x

= -m*(-0.42)/0.23

= 1.83*m

(1/2)*k*A^2 = (1/2)*k*x^2 + (1/2)*m*v^2

(1/2)*1.83*m*A^2 = (1/2)*1.83*m*0.23^2 + (1/2)*m*0.2^2

(1/2)*1.83*A^2 = (1/2)*1.83*0.23^2 + (1/2)*0.2^2


A = 0.27 m

e) x = A*cos(w*t + phi)

at t = 0

x = A*cos(phi)

==> phi = cos^-1(x/A)

= cos^-1(0.23/0.27)

= 0.55 rad

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle moves along the x axis. It is initially at the position 0.150 m, moving...
A particle moves along the x axis. It is initially at the position 0.150 m, moving with velocity 0.080 m/s and acceleration -0.340 m/s2. Suppose it moves with constant acceleration for 5.60 s. (a) Find the position of the particle after this time. (b) Find its velocity at the end of this time interval. Next, assume it moves with simple harmonic motion for 5.60 s and x = 0 is its equilibrium position. (Assume that the velocity and acceleration is...
A particle moves along the x axis. It is initially at the position 0.150 m, moving...
A particle moves along the x axis. It is initially at the position 0.150 m, moving with velocity 0.080 m/s and acceleration -0.340 m/s2. Suppose it moves with constant acceleration for 5.60 s. (c) Find its position (d) Find its velocity at the end of this time interval.
3.   A     particle     moves     along     the     x-­‐axis     according     to    &nbsp
3.   A     particle     moves     along     the     x-­‐axis     according     to     the     function     x=     7.0t4     +     3.5t3,     where     x     is     in     meters      and     t     in     seconds.     (8     marks)      3.1 Calculate     the     displacement     of     the     particle     from     time     t     =     0s     to     t     =     2s     of     its     motion.     (1     mark)      3.2 Calculate     the     average     velocity     of     the     particle     from     time     t     =     0s     to     t     =     2s     of     its     motion.     (1     mark)     3.3 Calculate     the     instantaneous     velocities     of     the     particle     at     t=3.0s  ...
please do 1,2 and 3 thanks 1.The position of a particle moving along the x axis...
please do 1,2 and 3 thanks 1.The position of a particle moving along the x axis is given in centimeters by x = 9.12 + 1.75 t3, where t is in seconds. Calculate (a) the average velocity during the time interval t = 2.00 s to t = 3.00 s; (b) the instantaneous velocity at t = 2.00 s; (c) the instantaneous velocity at t = 3.00 s; (d) the instantaneous velocity at t = 2.50 s; and (e) the...
A particle moving along the x axis in simple harmonic motion starts from its equilibrium position,...
A particle moving along the x axis in simple harmonic motion starts from its equilibrium position, the maximum value, at t = 0, moving to the right. The amplitude of the motion is 2.00 cm and the frequency is 1.50 Hz. (a) Find an expression for the position of the particle as a function of time. Determine (b) the maximum speed of the particle and (c) the earliest time (t > 0) at which the particle has this speed. Find...
The velocity-time graph of a particle moving along the x-axis is shown. The particle has zero...
The velocity-time graph of a particle moving along the x-axis is shown. The particle has zero velocity at t = 0.00 s and reaches a maximum velocity, vmax, after a total elapsed time, ttotal. If the initial position of the particle is x0 = 7.29 m, the maximum velocity of the particle is vmax = 11.3 m/s, and the total elapsed time is ttotal = 25.0 s, what is the particle's position at t = 16.7 s? b. At t...
A particle moves along one dimension with a constant acceleration of 4.60 m/s2 over a time...
A particle moves along one dimension with a constant acceleration of 4.60 m/s2 over a time interval. At the end of this interval it has reached a velocity of 13.8 m/s. (a) If its original velocity is 6.90 m/s, what is its displacement (in m) during the time interval? m (b) What is the distance it travels (in m) during this interval? m (c) A second particle moves in one dimension, also with a constant acceleration of 4.60 m/s2 ,...
The velocity of a particle moving along the x-axis varies with time according to v(t) =...
The velocity of a particle moving along the x-axis varies with time according to v(t) = A + Bt−1, where A = 7 m/s, B = 0.33 m, and 1.0 s ≤ t ≤ 8.0 s. Determine the acceleration (in m/s2) and position (in m) of the particle at t = 2.6 s and t = 5.6 s. Assume that x(t = 1 s) = 0. t = 2.6 s acceleration  m/s2 position  m ? t = 5.6 s acceleration  m/s2   position  m ?
The position of a particle moving along the x axis is given in centimeters by x...
The position of a particle moving along the x axis is given in centimeters by x = 9.31 + 1.02 t3, where t is in seconds. Calculate (a) the average velocity during the time interval t = 2.00 s to t = 3.00 s; (b) the instantaneous velocity at t = 2.00 s; (c) the instantaneous velocity at t = 3.00 s; (d) the instantaneous velocity at t = 2.50 s; and (e) the instantaneous velocity when the particle is...
The position of a particle moving along the x axis is given in centimeters by x...
The position of a particle moving along the x axis is given in centimeters by x = 9.58 + 1.68 t3, where t is in seconds. Calculate (a) the average velocity during the time interval t = 2.00 s to t = 3.00 s; (b) the instantaneous velocity at t = 2.00 s; (c) the instantaneous velocity at t = 3.00 s; (d) the instantaneous velocity at t = 2.50 s; and (e) the instantaneous velocity when the particle is...