Question

61) The position of a 0.75-kg cart attached to a spring can be given by the...

61) The position of a 0.75-kg cart attached to a spring can be given by the equation . (a) Plot position-time,
velocity-time, and acceleration-time graphs representing the motion of the cart. (b) Draw a force diagram showing all forces exerted on the cart when it is at its maximum displacement away from equilibrium. (c) Determine the force the spring exerts on the cart at that displacement.


no equation was given, sorry :(

Homework Answers

Answer #1

Hi Dear ,

Neither the spring constant nor the the distance from the equilibrium is given so I am providing a general framework as instant remedy.

(a)

...........................................................................................

I will attach the solution.

If any doubt, feel free to ask.

P.S. : A feedback is much appreciated.
If you find the solution helpful , kindly consider rating it.
Regards,

Courtesy : H.J. Pain, The Physics of Vibrations and Waves 6th Ed

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.9-kg cart is attached to a horizontal spring for which the spring constant is 60...
A 2.9-kg cart is attached to a horizontal spring for which the spring constant is 60 N/m . The system is set in motion when the cart is 0.27 m from its equilibrium position, and the initial velocity is 1.8 m/s directed away from the equilibrium position. What is the amplitude of the oscillation? What is the speed of the cart at its equilibrium position?
A 0.85-kg air cart is attached to a spring and allowed to oscillate. If the displacement...
A 0.85-kg air cart is attached to a spring and allowed to oscillate. If the displacement of the air cart from equilibrium is x=(10.0cm)cos[(2.00s−1)t+π], find the maximum kinetic energy of the cart. Find the maximum force exerted on it by the spring.
Motion of an oscillating mass [0.75 kg] attached to the spring is described by the equation...
Motion of an oscillating mass [0.75 kg] attached to the spring is described by the equation below: (??) = 7.4 (????) ?????? [(4.16 ?????? ?? ) ?? ? 2.42] Find: a. Amplitude b. Frequency c. Time Period d. Spring constant e. Velocity at the mean position f. Potential energy g. at the extreme position.
A 2.30 kg frictionless block is attached to an ideal spring with force constant 314 N/m...
A 2.30 kg frictionless block is attached to an ideal spring with force constant 314 N/m . Initially the block has velocity -3.50 m/s and displacement 0.240 m . Find the amplitude of the motion.? Find the maximum acceleration of the block.? Find the maximum force the spring exerts on the block.?
A 0.150-kg cart is attached to an ideal spring with a force constant of (spring constant)...
A 0.150-kg cart is attached to an ideal spring with a force constant of (spring constant) of 3.58 N/m undergoes simple harmonic motion and has a speed of 1.5 m/s at the equilibrium position. At what distance from the equilibrium position are the kinetic energy and potential energy of the system the same?
A 250 g cart is on a frictionless horizontal track. The cart is attached to a...
A 250 g cart is on a frictionless horizontal track. The cart is attached to a spring of spring constant 125 N/m whose free end is fastened to the end of the track. A 100 g soft iron mass is sitting on and moving with the cart so that the total mass is 350 g. The cart and mass are given a 5.00 cm displacement from their equilibrium position and released. Determine the (A) (i) equation of motion for the...
An object of mass of 2.7 kg is attached to a spring with a force constant...
An object of mass of 2.7 kg is attached to a spring with a force constant of k = 280 N/m. At t = 0, the object is observed to be 2.0 cm from its equilibrium position with a speed of 55 cm/s in the -x direction. The object undergoes simple harmonic motion “back and forth motion” without any loss of energy. (a) Sketch a diagram labeling all forces on the object and calculate the maximum displacement from equilibrium of...
A 2.10 kgkg frictionless block is attached to an ideal spring with force constant 317 N/mN/m...
A 2.10 kgkg frictionless block is attached to an ideal spring with force constant 317 N/mN/m . Initially the block has velocity -4.00 m/sm/s and displacement 0.260 mm . A.Find the amplitude of the motion. B. Find the maximum acceleration of the block. C. Find the maximum force the spring exerts on the block.
A cart with a mass of 2.0 kg is given quick push up a ramp so...
A cart with a mass of 2.0 kg is given quick push up a ramp so that it starts with a speed of 3.0 m/s. Angle of the ramp is 30 degrees. Friction can be ignored. • What’s value of the forces that act on the cart? • What is the net force and acceleration of the cart? • What distance along the ramp does the cart travel before coming to a stop? Also if possible include Free body diagram,...
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to...
A 4-foot spring measures 8 feet long after a mass weighing 8 pounds is attached to it. The medium through which the mass moves offers a damping force numerically equal to 2 times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 9 ft/s. (Use g = 32 ft/s2 for the acceleration due to gravity.) x(t) = Find the time at which the mass attains its...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT