Question

The figure below (Figure 1) illustrates an Atwood's machine. Let the masses of blocks A and...

The figure below (Figure 1) illustrates an Atwood's machine. Let the masses of blocks A and B be 5.50 kgand 2.00 kg, respectively, the moment of inertia of the wheel about its axis be 0.400 kg⋅m2 and the radius of the wheel be 0.150 m

a. Find the linear acceleration of block A if there is no slipping between the cord and the surface of the wheel.

Express your answer in meters per second squared.

b.Find the linear acceleration of block B if there is no slipping between the cord and the surface of the wheel.

Express your answer in meters per second squared.

c.Find the angular acceleration of the wheel C if there is no slipping between the cord and the surface of the wheel.

Express your answer in radians per second squared.

Homework Answers

Answer #1

Hope this helps...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(Figure 1) illustrates an Atwood's machine. Let the masses of blocks A and B be 7.50...
(Figure 1) illustrates an Atwood's machine. Let the masses of blocks A and B be 7.50 kg and 1.50 kg , respectively, the moment of inertia of the wheel about its axis be 0.220 kg⋅m2, and the radius of the wheel be 0.120 m. There is no slipping between the cord and the surface of the wheel. Part A Find the magnitude of the linear acceleration of block A. Express your answer with the appropriate units. Part B Find the...
An Atwood's machine consists of blocks of masses m1 = 13.0 kg and m2 = 19.0...
An Atwood's machine consists of blocks of masses m1 = 13.0 kg and m2 = 19.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 9.20 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. (a) Why must the tension T2 be greater than the tension T1? This answer has...
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0...
An Atwood's machine consists of blocks of masses m1 = 12.0 kg and m2 = 22.0 kg attached by a cord running over a pulley as in the figure below. The pulley is a solid cylinder with mass M = 7.60 kg and radius r = 0.200 m. The block of mass m2 is allowed to drop, and the cord turns the pulley without slipping. Two objects, blocks labeled m1 and m2, are connected to a cord which is hung...
Constants (Figure 1)Block 1, of mass m1 = 0.600 kg , is connected over an ideal...
Constants (Figure 1)Block 1, of mass m1 = 0.600 kg , is connected over an ideal (massless and frictionless) pulley to block 2, of mass m2, as shown. For an angle of ? = 30.0 ? and a coefficient of kinetic friction between block 2 and the plane of ? = 0.400, an acceleration of magnitude a = 0.400 m/s2 is observed for block 2. Part A Find the mass of block 2, m2. Express your answer numerically in kilograms.
The diagram below shows a block of mass m=2.00kgm=2.00kg on a frictionless horizontal surface, as seen...
The diagram below shows a block of mass m=2.00kgm=2.00kg on a frictionless horizontal surface, as seen from above. Three forces of magnitudes F1=4.00NF1=4.00N, F2=6.00NF2=6.00N, and F3=8.00NF3=8.00N are applied to the block, initially at rest on the surface, at angles shown on the diagram. (Figure 1) In this problem, you will determine the resultant (total) force vector from the combination of the three individual force vectors. All angles should be measured counterclockwise from the positive x axis (i.e., all angles are...
1) a) Consider a particle of mass m = 22.0 kg revolving around an axis with...
1) a) Consider a particle of mass m = 22.0 kg revolving around an axis with angular speed ω omega. The perpendicular distance from the particle to the axis is r = 1.75 m . (Figure 1) Which of the following are units for expressing rotational velocity, commonly denoted by ωωomega? Check all that apply. ( ) radians per second ( ) degrees per second ( ) meters per second ( ) arc seconds ( ) revolutions per second 1)...
A child is bouncing an a trampoline. The child has a mass of 50.5 kg ....
A child is bouncing an a trampoline. The child has a mass of 50.5 kg . She leaves the surface of the trampoline with an initial upwards velocity of 10.2 m/s . When she reaches height 1.60 m above the trampoline (still on the way up), she grabs a large (stationary) plastic block. The mass of the block is 8.00 kg . (Figure 1) For this problem, use g=9.80 meters per second per second for the magnitude of the acceleration...
Please answer all, Thank you. 1. A firework is designed so that when it is fired...
Please answer all, Thank you. 1. A firework is designed so that when it is fired directly upwards, it explodes and splits into three equal-massed parts at its peak. Someone launches the firework directly upwards and measures the locations of two of the pieces of the firework. They find that one piece landed 2 meters to the left and another piece landed two meters in front of them. Where did the third piece of land? 2. A Newton's cradle is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT