Question

A ball is attached to a spring on a frictionless horizontal surface. The ball is pulled...

A ball is attached to a spring on a frictionless horizontal surface. The ball is pulled to the right and released from rest at t = 0 s. If the ball reaches a maximum speed of 43.8 cm/s and oscillates with a period of 3.00 s, what is the ball's velocity at t = 0.300 s?


-21.9 cm/s
-16.9 cm/s
-56.4 cm/s
-25.7 cm/s

Homework Answers

Answer #1

The ball is released when the ball is at one of the extreme ends and then it oscillates with the same amplitude.

The equation of the motion for the resulting SHM is

This gives the velocity as a function of time

The period of the oscillation is given by

That gives us

The maximum velocity is reached when the sin function in the equation above gets its maximum value (which is 1). i.e

Now, putting the values in the equation

So, the correct answer is 25.7 cm/s.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.200 kg mass attached to a horizontal spring is displaced 15.4 cm from rest and...
A 0.200 kg mass attached to a horizontal spring is displaced 15.4 cm from rest and then released. If the mass oscillates 8.00 times in 19.3 s, what is the spring constant in the spring? 0.0344 N/m 1.36 N/m 6.78 N/m 0.0212 N/m What is the time constant of an oscillator if its amplitude of oscillation is decreased to 32.3% of its original value in 8.50 s? 7.52 s 15.0 s 3.76 s 1.22 s A ball is attached to...
A mass attached to a spring oscillates back and forth on a horizontal frictionless surface. The...
A mass attached to a spring oscillates back and forth on a horizontal frictionless surface. The velocity of the mass is modeled by the function v = 2πfA cos(2πft) when at t = 0, x = 0. What is the magnitude of the velocity in cm/s at the equilibrium position for an amplitude of 4.5 cm and a frequency of 2.3 Hz?
A 4.00 kg mass on a frictionless horizontal surface is attached to a spring. The other...
A 4.00 kg mass on a frictionless horizontal surface is attached to a spring. The other end of the spring is fixed to a wall. The spring constant is 6.00 N/m. The mass is moved to the right, stretching the spring by 12.0 cm, and then released from rest. a) Find the frequency of the motion in Hz. b) Find the force when x = 6.00 cm. c) Find the time when x = 6.00 cm. d) Find the velocity...
A block attached to a horizontal spring is pulled to the right a distance of 19.0...
A block attached to a horizontal spring is pulled to the right a distance of 19.0 cm from the equilibrium position. The block is released and the block-spring system undergoes SHM at f = 1.28 Hz. Assuming that positive is to the right, determine at 0.300 s after release the block's displacement, velocity, and acceleration. Neglect friction. (Indicate the direction with the sign of your answer.)
1.A 1.10 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring...
1.A 1.10 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring with k = 490 N/m. Let x be the displacement of the block from the position at which the spring is unstretched. At t = 0 the block passes through x = 0 with a speed of 3.40 m/s in the positive x direction. What are the (a) frequency and (b) amplitude of the block's motion 2.A vertical spring stretches 13 cm when a...
A block rests on a frictionless horizontal surface and is attached to a spring. When set...
A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 8.9 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled ''x = 0 m.'' The drawing also shows a small bottle located 0.080 m to the right of this position. The block is pulled to the right, stretching the spring...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 4.8 kN/m. The block is pulled to the right so that the spring is stretched 7.2 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 37 N. (a) What is the kinetic energy of the block when it has moved 1.6 cm from...
A mass that can oscillate without friction on a horizontal surface is attached to a horizontal...
A mass that can oscillate without friction on a horizontal surface is attached to a horizontal spring. The mass is pulled to the right 120 cm and is released from rest (at time t = 0 s). The period of oscillation of the mass is 6.72 s What is the speed of the mass at t = 2.50s? (Please explain the work to me, I'm being told it's 0.808m/s but I can't get that answer. Thanks!)
A 5.00 kg mass is attached to a spring on a horizontal frictionless surface. The elastic...
A 5.00 kg mass is attached to a spring on a horizontal frictionless surface. The elastic constant of the spring is 30.8 N/m. If the mass is 28.5 cm right (+) of the equilbrium point and moving right (+) at speed 6.1 m/s, what is the initial phase of the oscillation?
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 21.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring. N/m (b) Find the frequency of the oscillations. Hz (c)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT