Question

A large, solid sphere (mass = 103 kg) with a radius of 19 cm is suspended...

A large, solid sphere (mass = 103 kg) with a radius of 19 cm is suspended by a vertical wire. In order to rotate the sphere about the wire by an angle of 0.75 radians and hold it in that orientation, a torque of 0.16 Nm is needed. What is the period of oscillation of the rotating system once the sphere is released? Your answer should be in s, but enter only the numerical part in the box.

Homework Answers

Answer #1

Torque acting on the sphere is

which keeps it on hold at an angle of

So, the torsional constant is

Mass of the pendulum bob is

and it has a radius of

So, moment of inertia of the pendulum sphere is

So, period of oscillation of the system is hence given by the expression

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 4.8 kg uniform solid sphere has a radius of 32 cm and is initially at...
A 4.8 kg uniform solid sphere has a radius of 32 cm and is initially at rest. It is mounted so that it can rotate about an axis throughout its center of mass. If a constant net torque of 17Nm is applied to the sphere (about its center of mass), then find the power applied to the sphere 2.4s after it begins rotating.
A solid cylinder of mass 1.6 kg and radius 35 cm is rotating counterclockwise around a...
A solid cylinder of mass 1.6 kg and radius 35 cm is rotating counterclockwise around a vertical axis running through the centers of its circular faces at 560 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis running through the centers of its circular faces at 850 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity (in rev/min) of the...
A uniform, solid sphere of radius 5.75 cm 5.75 cm and mass 3.25 kg 3.25 kg...
A uniform, solid sphere of radius 5.75 cm 5.75 cm and mass 3.25 kg 3.25 kg starts with a purely translational speed of 1.25 m/s 1.25 m/s at the top of an inclined plane. The surface of the incline is 2.25 m 2.25 m long, and is tilted at an angle of 29.0 ∘ 29.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ? 2 v2 at the...
A solid, homogeneous sphere with of mass of M = 2.25 kg and a radius of...
A solid, homogeneous sphere with of mass of M = 2.25 kg and a radius of R = 11.3 cm is resting at the top of an incline as shown in the figure. The height of the incline is h = 1.65 m, and the angle of the incline is θ = 17.3°. The sphere is rolled over the edge very slowly. Then it rolls down to the bottom of the incline without slipping. What is the final speed of...
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely...
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely translational speed of 1.25 m/s at the top of an inclined plane. The surface of the incline is 1.00 m long, and is tilted at an angle of 25.0 ∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed v 2 at the bottom of the ramp.
A uniform, solid sphere of radius 4.50 cm and mass 2.25 kg starts with a purely...
A uniform, solid sphere of radius 4.50 cm and mass 2.25 kg starts with a purely translational speed of 1.25 m/s at the top of an inclined plane. The surface of the incline is 2.75 m long, and is tilted at an angle of 22.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2=__________ m/s
A uniform, solid sphere of radius 3.50 cm and mass 1.25 kg starts with a purely...
A uniform, solid sphere of radius 3.50 cm and mass 1.25 kg starts with a purely translational speed of 2.50 m/s at the top of an inclined plane. The surface of the incline is 1.50 m long, and is tilted at an angle of 28.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2= m/s
2) A solid sphere with mass 2kg and radius 0.2 meters is rotating clockwise about its...
2) A solid sphere with mass 2kg and radius 0.2 meters is rotating clockwise about its center with ωi =5 rad/s. a) Find its Moment of Inertia. b) We want to double its angular speed in 3 full turns of the sphere. Find its acceleration.c) A constant force is acting on the edge with 135 degrees angle. Find the Force needed to for this acceleration
A solid sphere ( of mass 2.50 kg and radius 10.0 cm) starts rolling without slipping...
A solid sphere ( of mass 2.50 kg and radius 10.0 cm) starts rolling without slipping on an inclined plane (angle of inclination 30 deg). Find the speed of its center of mass when it has traveled down 2.00 m along with the inclination. Groups of choices: a. 3.13 m/s b. 4.43 m/s c. 3.74 m/s d. 6.26 m/s
An object (either solid sphere, hoop or solid disk) of Mass M=10kg and radius R=4m is...
An object (either solid sphere, hoop or solid disk) of Mass M=10kg and radius R=4m is at the bottom of an incline having inclination angle X=40 degrees and base length X=15 meters, with an initial rotational velocity omega(i)=2rad/s; it is subsequently pulled up the the incline by some force F=15 (Newtons) such that at the top of the incline it has a final rotational velocity omega(f)=7rad/s. Determine: a) the linear velocity, b) rotational KE and c) total work and work...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT