Question

Consider a monochromatic wave on a sting described by an equation Y(x,t) = cos (x -...

Consider a monochromatic wave on a sting described by an equation Y(x,t) = cos (x - t). Assume everything is expressed in SI units.

a) Find wave amplitude

b) Find wave velocity

c) Find wave frequency

d) Find wavelength

Homework Answers

Answer #1

The following parts can be solved as follows:-

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a monochromatic wave on a sting described by an equation Y(x,t) = cos (x -...
Consider a monochromatic wave on a sting described by an equation Y(x,t) = cos (x - t). Assume everything is expressed in SI units. a) What is speed of sound in the air at normal conditions in m/s? b) Why is it difficult for a passenger jet to fly faster than sound? c) What is the wavelength of a sound propagating in air generated by the standard A-tone (440 Hz)? d) Suppose you stand between two speakers, exactly at the...
A wave on a string is described by the equation y(x, t) = 2*cos(2 π(x/4m- t...
A wave on a string is described by the equation y(x, t) = 2*cos(2 π(x/4m- t /.1 s)) where x is in meters and t is in seconds. a. Is the wave travelling to the right or to the left? _________ b. What is the wave frequency? __________ c. What is the wavelength? ___________ d. What is the wave speed? _________ e. At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________
A wave on a string is described by the equation y = 12 cos(1.57 x -...
A wave on a string is described by the equation y = 12 cos(1.57 x - 6.28 t). The lengths are measured in cm and time in s. Determine; (a) the amplitude, frequency, and the time it takes for the wave repeats itself, (b) the speed of the wave and the distance a peak of the wave travels in 3 T + .5 s. (c) Paint a point on this string. What length does this point move in 2.5 s.
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is...
A wave on a string is described by the equation y(x,t)=3.0 cm*〖cos(〗⁡〖2π*(x/2.4m+t/(0.2 s)))〗 . X is in meters and t is in seconds. Is the wave travelling to the right or to the left? _________ What is the wave speed? _________ What is the wave frequency? __________ What is the wavelength? ___________ At t=0.50 seconds what is the displacement of the string at x=0.20 meters. _________
A sinusoidal wave is described by y(x,t)= (0.45m )sin (0.30 x – 50t+π/6), where ‘x’ and...
A sinusoidal wave is described by y(x,t)= (0.45m )sin (0.30 x – 50t+π/6), where ‘x’ and ‘y’ are in meters and ‘t’ is in seconds.(a). Find the transverse velocity and transverse acceleration expression. (b).Determine the amplitude , angular frequency, angular wave number, wavelength, wave speed and direction of the motion.?
A wave on a string has a displacement according to the equation: y(x,t) = 25.0 cm...
A wave on a string has a displacement according to the equation: y(x,t) = 25.0 cm sin ((36.0/m)x – (8.00/sec)t) Determine the amplitude, frequency, period, velocity, and wavelength of the wave. Find the maximum x. Also determine the transverse velocity at t = 0.16 sec and x's maximum.
A certain transverse wave is described by the equation y(x,t)= ( 7.00 mm )sin2π(t0.0360s−x0.280m). A:Determine this...
A certain transverse wave is described by the equation y(x,t)= ( 7.00 mm )sin2π(t0.0360s−x0.280m). A:Determine this wave's amplitude B:Determine this wave's wavelength C:Determine this wave's frequency. D: Determine this wave's speed of propagation E:Determine this wave's direction of propagation.
A wave on a string has a wave function given by: y (x, t) = (0.300m)...
A wave on a string has a wave function given by: y (x, t) = (0.300m) sin [(4.35 m^-1 ) x + (1.63 s^-1 ) t] where t is expressed in seconds and x in meters. Determine: (10 points) a) the amplitude of the wave b) the frequency of the wave c) wavelength of the wave d) the speed of the wave
7. A wave on a string has a displacement according to the equation: y(x,t) = 25.0...
7. A wave on a string has a displacement according to the equation: y(x,t) = 25.0 cm sin ((36.0/m)x – (8.00/sec)t) Determine the amplitude, frequency, period, velocity, and wavelength of the wave. Also determine the transverse velocity at t = 0.16 sec.
A transverse wave on a string is described by y(x, t) = (0.140 mm) sin {(5.747...
A transverse wave on a string is described by y(x, t) = (0.140 mm) sin {(5.747 rad/m)[x − (69.8 m/s)t]}. Find the wavelength of this wave. in m Find the frequency of this wave. in Hz Find the amplitude of this wave in mm Find the speed of motion of the wave in m/s Find the direction of motion of the wave. Express your answer as "+x" or "-x".