Question

A block (mass = 3.0 kg) is hanging from a massless cord that is wrapped around...

A block (mass = 3.0 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.2 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a value of 0.033 m during the block's descent. Find (a) the angular acceleration of the pulley and (b) the tension in the cord.

Homework Answers

Answer #1

Given that I = 1.2*10^-3 Kg-m^2


net force acting on the block during descending is

Let F be the tension in the string

Fnet = m*a

mg-F = m*a

3*9.8 - F= 3*a


F = 29.4-(3*a)

and Torque T = r*F


I*alpha = r*F

but angular accelaration alpha = a/r

I*a/r = r*F

1.2*10^-3*a = r^2*F

1.2*10^-3*a = 0.033^2*F


a= 0.033^2*F/(1.2*10^-3) = 0.9075*F

then F = 29.4-(3*a)

F = 29.4 - (3*0.9075*F)


tension is F = 7.89 N...answer for (b)

angular accelaration is alpha = a/r

a = 0.9075*F =0.9075*7.89 = 7.16 m/s^2

alpha = a/r = 7.16/0.033 = 217 rad/s^2....answer for (a)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block (mass = 1.2 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 1.2 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.0 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 1.0 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 1.0 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.1 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 2.3 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 2.3 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1.7 x 10-3 kg·m2), as the figure shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley as the block falls. Assume that the radius of the cord around the pulley remains constant at a...
A block (mass = 59.1 kg) is hanging from a massless cord that is wrapped around...
A block (mass = 59.1 kg) is hanging from a massless cord that is wrapped around a pulley (moment of inertia = 1/2MR2 kg · m2, where M = 6.9 kg is the mass of the pulley and R=1.3 m is its radius ), as the drawing shows. Initially the pulley is prevented from rotating and the block is stationary. Then, the pulley is allowed to rotate as the block falls. The cord does not slip relative to the pulley...
A hanging weight, with a mass of m1 = 0.365 kg, is attached by a cord...
A hanging weight, with a mass of m1 = 0.365 kg, is attached by a cord to a block with mass m2 = 0.815 kg as shown in the figure below. The cord goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R1 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...
To start her lawn mower, Julie pulls on a cord that is wrapped around a pulley....
To start her lawn mower, Julie pulls on a cord that is wrapped around a pulley. The pulley has a moment of inertia about its central axis of III = 0.590 kg⋅m2kg⋅m2 and a radius of 4.00 cmcm . There is an equivalent frictional torque impeding her pull of τfτftau_f = 0.260 m⋅Nm⋅N . To accelerate the pulley at ααalpha = 4.35 rad/s2rad/s2 , how much torque does Julie need to apply to the pulley? How much tension must the...
4. A massless rope is wrapped around a uniform solid cylinder that has radius of 30...
4. A massless rope is wrapped around a uniform solid cylinder that has radius of 30 cm and mass 10 kg, as shown in the figure. The cylinder begins to unwind when it is released and allowed to rotate. (a) What is the acceleration of the center of mass of the cylinder? (b) If 90 cm of rope is unwound from the cylinder as it falls, how fast is it rotating at this instant?
A solid cylinder has a mass of 100 kg and radius 0.225m. The cylinder is attached...
A solid cylinder has a mass of 100 kg and radius 0.225m. The cylinder is attached to a frictionless horizontal axle. A long (light weight) cable is wrapped around the cylinder. Attached to the end of the cable is a 1.50 kg mass. The system is initially stationary. The hanging mass is then released. The mass pulls on the cable as it falls and this causes the cylinder to rotate. a) What is the velocity of the hanging mass after...
A hanging object has a mass of m1 = 0.435 kg; the sliding block has a...
A hanging object has a mass of m1 = 0.435 kg; the sliding block has a mass of m2 = 0.880 kg; and the pulley is a hollow cylinder with a mass of M = 0.350 kg, an inner radius of R1 = 0.020 0 m, and an outer radius of R2 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface is ?k = 0.250....
A hanging weight, with a mass of m1 = 0.355 kg, is attached by a rope...
A hanging weight, with a mass of m1 = 0.355 kg, is attached by a rope to a block with mass m2 = 0.845 kg as shown in the figure below. The rope goes over a pulley with a mass of M = 0.350 kg. The pulley can be modeled as a hollow cylinder with an inner radius of R1 = 0.0200 m, and an outer radius of R2 = 0.0300 m; the mass of the spokes is negligible. As...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT
Active Questions
  • Use the given transformation to evaluate the integral. (x − 6y) dA, R where R is...
    asked 10 minutes ago
  • Which document is necessary in establishing outsourcing relationships with an application service provider (ASP)? Service Level...
    asked 19 minutes ago
  • In order to conduct a hypothesis test for the population proportion, you sample 450 observations that...
    asked 25 minutes ago
  • Doctor’s Order: Vancomycin 500mg tab i po q12h X 7 days Available: Vancomycin 500mg tablets What...
    asked 38 minutes ago
  • Calculate the ΔG∘rxn for the reaction using the following information. 4HNO3(g)+5N2H4(l)→7N2(g)+12H2O(l) ΔG∘f(HNO3(g)) = -73.5 kJ/mol; ΔG∘f(N2H4(l))...
    asked 39 minutes ago
  • Question 03: Saturn Shoes (Pvt.) Ltd manufacture multi-style fashion boots for the residents of Missouri. Leather...
    asked 41 minutes ago
  • A highway with a design speed of 100 km/hr is designed with a sag curve connecting...
    asked 53 minutes ago
  • Shift Registers can be used for serial/parallel interface applications. True or false?
    asked 1 hour ago
  • Scenario 1: To describe the instructors’ experience, the researcher records the year in which each instructor...
    asked 1 hour ago
  • develop a flowchart or pseudocode to check the prime numbers 1- below 100 what to do...
    asked 1 hour ago
  • Which of the following statements are true? I. The sampling distribution of ¯xx¯ has standard deviation...
    asked 1 hour ago
  • Which of the following methods of reporting cash flows provided by operating activities does the Financial...
    asked 1 hour ago