Question

A parallel-plate capacitor has circular plates and no dielectric between the plates. Each plate has a...

A parallel-plate capacitor has circular plates and no dielectric between the plates. Each plate has a radius equal to 2.2 cm and the plates are separated by 1.1 mm. Charge is flowing onto the upper plate (and off the lower plate) at a rate of 2.9 A. (a) Find the rate of change of the electric field strength in the region between the plates. V/m·s (b) Compute the displacement current between the plates and show that it equals 2.9 A. PLEASE EXPLAIN HOW YOU DERIVE THE EQUATIONS THAT YOU USE FROM THE ORIGINAL EQUATION WHILE YOU SOLVING THE PROBLEM. . .

Homework Answers

Answer #1

We know,
Q = C * V & Q = I * t
So,
I * t = C* V
I/C = dV/dt

Area,
A = 3.14 * (2.2*10^-2)^2 m^2

C = ε*A/d
C = (8.85 * 10^-12) *  3.14 * (2.2*10^-2)^2 / (1.1 * 10^-3)
C = 1.22 * 10^-11 F

dE/dt = ( dV/dt ) / d
dE/dt = [2.9/(1.22 * 10^-11)]/(1.1*10^-3)
dE/dt = 2.16 * 10^14 V/m·s

Rate of change of the electric field , dE/dt = 2.16 * 10^14 V/m·s

(b)

Displacement Current is given by Id = ε * d(phi)/dt

Id = ε*d/dt(E.A)
Id = ε*A * dE/dt

Id = (8.85 * 10^-12) *  3.14 * (2.2*10^-2)^2 * 2.16 * 10^14
Id = 2.9 A

Hence Proved.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A parallel-plate capacitor has capacitance CC = 12.5 pFpF when the volume between the plates is...
A parallel-plate capacitor has capacitance CC = 12.5 pFpF when the volume between the plates is filled with air. The plates are circular, with radius 3.00 cmcm. The capacitor is connected to a battery and a charge of magnitude 25.0 pCpC goes onto each plate. With the capacitor still connected to the battery, a slab of dielectric is inserted between the plates, completely filling the space between the plates. After the dielectric has been inserted the charge on each plate...
A parallel-plate capacitor is being charged. The capacitor consists of two circular parallel plates of area...
A parallel-plate capacitor is being charged. The capacitor consists of two circular parallel plates of area A and separation d. (a) Show that the displacement current in the capacitor gap has the same value as the conduction current in the capacitor leads. (b) What is the direction of the Poynting vector in the region of space between the capacitor plates? (c) Calculate the Poynting vector S this region and show that the flux of S this region is equal to...
As a parallel-plate capacitor with circular plates 25 cm in diameter is being charged, the current...
As a parallel-plate capacitor with circular plates 25 cm in diameter is being charged, the current density of the displacement current in the region between the plates is uniform and has a magnitude of 27 A/m2. (a) Calculate the magnitude B of the magnetic field at a distance r = 54 mm from the axis of symmetry of this region. (b) Calculate dE/dt in this region.
A parallel-plate capacitor made of half-circular plates of radius 10 cm separated by 1.50 mm is...
A parallel-plate capacitor made of half-circular plates of radius 10 cm separated by 1.50 mm is charged to a potential difference of 600 volts by a battery. Then a sheet of tantalum pentoxide is pushed between the plates, completely filling the gap between them. How much additional charge flows from the battery to one of the plates when the tantalum pentoxide is inserted? Dielectric constant for tantalum pentoxide: 25
1.) A parallel-plate capacitor is constructed from two circular plates with diameter 5.0 cm separated by...
1.) A parallel-plate capacitor is constructed from two circular plates with diameter 5.0 cm separated by 0.20 mm. What charge will collect on the plates if the capacitor is connected to a potential difference of 35.0 V? 2.)The capacitor from the previous problem is now disconnected from the voltage source. The separation between the capacitor plates is quadrupled and an insulator is inserted between the plates. The voltage between the plates is measured to be 68.3 V. Find the dielectric...
Consider a parallel-plate capacitor constructed from two circular metal plates of radius R. The plates are...
Consider a parallel-plate capacitor constructed from two circular metal plates of radius R. The plates are separated by a distance of 1.4 mm . What radius must the plates have if the capacitance of this capacitor is to be 1.5 μF ? If the separation between the plates is increased, should the radius of the plates be increased or decreased to maintain a capacitance of 1.5 μF ?
A parallel-plate capacitor made of half-circular plates of radius 10 cm separated by 1.50 mm is...
A parallel-plate capacitor made of half-circular plates of radius 10 cm separated by 1.50 mm is charged to a potential difference of 600 volts by a battery. Then a sheet of tantalum pentoxide is pushed between the plates, completely filling the gap between them. How much additional charge flows from the battery to one of the plates when the tantalum pentoxide is inserted? Dielectric constant for some materials: tantalum pentoxide 25.
Two circular plates with diameter 1.57 cm are used to form a parallel plate capacitor. The...
Two circular plates with diameter 1.57 cm are used to form a parallel plate capacitor. The distance between the plates is 2.05 mm and the space between them is filled with air. Determine the magnitude of the electric field in this space when the capacitor is connected to a battery with a certain voltage that results in a charge of 2.38 pC on each plate.
The plates of a parallel plate capacitor are separated by a distance of 4mm. Each plate...
The plates of a parallel plate capacitor are separated by a distance of 4mm. Each plate has an area of 6cm2. The current that charges the capacitor has a constant value of 1.5mA. At t=0s the charge on the capacitor vanishes. i) Determine the charge and the potential on the capacitor after 6ms. ii) Determine the rate of change of the electric field ∆E/∆t iii) Determine the total displacement current .
A parallel plate capacitor is charged to 100 volts DC and it's plates are 1 mm...
A parallel plate capacitor is charged to 100 volts DC and it's plates are 1 mm apart, each with an area of 40x40 mm. The material between the plates has a dielectric constant of 5. Find the electric field between the plates and the value of the capacitor in microfarads.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT