Question

A helicopter carrying Dr. Evil takes off with a constant upward acceleration of 5.0 m/s2 ....

A helicopter carrying Dr. Evil takes off with a constant upward acceleration of 5.0 m/s2 . Secret agent Austin Powers jumps on just as the helicopter lifts off the ground. After the two men struggle for 13.0 s , Powers shuts off the engine and steps out of the helicopter. Assume that the helicopter is in free fall after its engine is shut off, and ignore the effects of air resistance.

Part A

What is the maximum height above ground reached by the helicopter?

Express your answer to two significant figures and include the appropriate units.

Part B

Powers deploys a jet pack strapped on his back 5.0 s after leaving the helicopter, and then he has a constant downward acceleration with magnitude 2.0 m/s2 . How far is Powers above the ground when the helicopter crashes into the ground?

Express your answer to two significant figures and include the appropriate units.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A helicopter carrying Dr. Evil takes off with a constant upward acceleration of 6.0 m/s^2 Secret...
A helicopter carrying Dr. Evil takes off with a constant upward acceleration of 6.0 m/s^2 Secret agent Austin Powers jumps on just as the helicopter lifts off the ground. After the two men struggle for 11.0s Powers shuts off the engine and steps out of the helicopter. Assume that the helicopter is in free fall after its engine is shut off, and ignore the effects of air resistance. What is the maximum height above ground reached by the helicopter? Powers...
A model rocket blasts off and moves upward with an acceleration of 12 m/s2 until it...
A model rocket blasts off and moves upward with an acceleration of 12 m/s2 until it reaches a height of 29 m, at which point its engine shuts off and it continues its flight in free fall. Use g = 9.81 m/s2. a. What is the maximum height attained by the rockets? b. What is the speed of the rocket just before it hits the ground? c. What is the total duration of the rocket's flight?
A rocket rises vertically, from rest, with an acceleration of 3.2 m/s2 until it runs out...
A rocket rises vertically, from rest, with an acceleration of 3.2 m/s2 until it runs out of fuel at an altitude of 715 m . After this point, its acceleration is that of gravity, downward. Part A What is the velocity of the rocket when it runs out of fuel? Express your answer to two significant figures and include the appropriate units. v715m = SubmitMy AnswersGive Up Part B How long does it take to reach this point? Express your...
A car traveling 77 km/h slows down at a constant 0.50 m/s2 just by "letting up...
A car traveling 77 km/h slows down at a constant 0.50 m/s2 just by "letting up on the gas." Part A Calculate the distance the car coasts before it stops. Express your answer to two significant figures and include the appropriate units. Part B Calculate the time it takes to stop. Express your answer to two significant figures and include the appropriate units. Part C Calculate the distance it travels during the first second. Express your answer to two significant...
An object experiences a constant acceleration of 2.00 m/s2 along the -x axis for 2.70 s,...
An object experiences a constant acceleration of 2.00 m/s2 along the -x axis for 2.70 s, attaining a velocity of 18.0 m/s in a direction 47∘∘ from the +x axis. 1) Calculate the magnitude of the initial velocity vector of the object. (Express your answer to two significant figures.) 2) Calculate the direction of the initial velocity vector of the object. Find the angle this vector makes with respect to the +x axis. Use value from -180 to +180. (Express...
Q1)At the surface of Jupiter's moon Io, the acceleration due to gravity is 1.81 m/s2 ....
Q1)At the surface of Jupiter's moon Io, the acceleration due to gravity is 1.81 m/s2 . A watermelon has a weight of 47.0 N at the surface of the earth. In this problem, use 9.81 m/s2 for the acceleration due to gravity on earth. a-What is its mass on the earth's surface? b-What is its mass on the surface of Io? c-What is its weight on the surface of Io? ---------------------------------------------------------------------- Q2)The upward normal force exerted by the floor is...