Question

Two equal but opposite charges of +1.0 nC and −1.0 nC are held fixed at locations...

Two equal but opposite charges of +1.0 nC and −1.0 nC are held fixed at locations
(x, y)=(0.0 cm,1.0 cm) and (x, y)=(0.0 cm,−1.0 cm). Points A, B, and C have coordinates (x, y)=(0.0 cm,2.0 cm), (x, y)=(0.0 cm,−2.0 cm), and (x, y)=(2.0 cm,0.0 cm), respectively, as shown in the above right figure.

a) What is the electric potential energy of the two-charge system.
b) Calculate the electric potential at points A, B, and C.
c) Rank in order, from largest to smallest, the potentials VA, VB, and VC.

Homework Answers

Answer #1

Dear student,
Find this solution, and RATE IT ,If you find it is helpful .your rating is very important to me.If any incorrectness ,kindly let me know I will rectify them soon.
Thanks for asking ..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two positive point charges are held fixed on the x-axis. Point charge A is located at...
Two positive point charges are held fixed on the x-axis. Point charge A is located at the origin, and point charge B is located at the position x = −5.00 cm = −5.00✕10-2 m (on the negative x-axis). The magnitude of charge A is two times greater than that of charge B: qA = 2qB. ke = 8.9876✕109 Nm2/C2 (A.) The electric force on charge A has magnitude 0.344 mN = 0.344⨯10-3 N. What is the electric force (magnitude and...
Two charges are located on the X axis: a +300 pC charge at x = 2.0...
Two charges are located on the X axis: a +300 pC charge at x = 2.0 cm, and a -400 pC charge at x = -2.0 cm. Find the X Y components of the electric field at a point on the Y axis with the coordinates (0, 1.0 cm).
Two point charges Q1 = 30.0 nC and Q2 = -40 nC are held fixed along...
Two point charges Q1 = 30.0 nC and Q2 = -40 nC are held fixed along the x-axis. Q1 is at x = 0 and Q2 is at x = 72.0 cm. A third particle, of mass m = 2.2 x 10-6 kg, has charge Q3 = 42µC. If Q3 is released from x = 28 cm, what is its initial acceleration?
Two coaxial conducting cylindrical shells have equal and opposite charges. The inner shell has charge −q...
Two coaxial conducting cylindrical shells have equal and opposite charges. The inner shell has charge −q and an inner radius a, and the outer shell has charge +q and an outer radius b. The length of each cylindrical shell is L, and L is very long compared with b. Find the potential difference, Va – Vb between the shells
Two point charges are located along the y-axis. One charge of 3 nC is at the...
Two point charges are located along the y-axis. One charge of 3 nC is at the origin and a second charge of 6 nC is at y=30 cm. a) Calculate the potential at y=60 cm. b) Calculate the potential at y=-60 cm. c) Repeat this problem assuming the 6 nC is replaced with a -6 nC charge.
The charges and coordinates of two charged particles held fixed in an xy plane are q1...
The charges and coordinates of two charged particles held fixed in an xy plane are q1 = 2.74 μC, x1 = 5.02 cm, y1 = 0.712 cm and q2 = -3.79 μC, x2 = -2.30 cm, y2 = 1.88 cm. Find the (a) magnitude and (b) direction (with respect to +x-axis in the range (-180°;180°]) of the electrostatic force on particle 2 due to particle 1. At what (c) x and (d) y coordinates should a third particle of charge...
The charges and coordinates of two charged particles held fixed in an xy plane are q1...
The charges and coordinates of two charged particles held fixed in an xy plane are q1 = 3.09 μC, x1 = 3.70 cm, y1 = 0.604 cm and q2 = -5.45 μC, x2 = -2.27 cm, y2 = 1.52 cm. Find the (a) magnitude and (b) direction (with respect to +x-axis in the range (-180°;180°]) of the electrostatic force on particle 2 due to particle 1. At what (c) x and (d) y coordinates should a third particle of charge...
Three point charges are placed on the x-y plane: a +40.0 nC charge at the origin,...
Three point charges are placed on the x-y plane: a +40.0 nC charge at the origin, a −40.0 nC charge on the x axis at 15.0 cm, and a +125.0 nC charge at the point (15.0 cm, 6.00 cm). (a) Find the total electric force on the +125.0 nC charge due to the other two. (b) What is the electric field at the location of the +125.0 nC charge due to the presence of the other two charges?
Two point charges Q1 = +4.90 nC and Q2 = −2.20 nC are separated by 45.0...
Two point charges Q1 = +4.90 nC and Q2 = −2.20 nC are separated by 45.0 cm. (a) What is the electric potential at a point midway between the charges? V (b) What is the potential energy of the pair of charges? J What is the significance of the algebraic sign of your answer? Positive work must be done to separate the charges.Negative work must be done to separate the charges.   
Two large, parallel, metal plates carry opposite charges of equal magnitude. They are separated by a...
Two large, parallel, metal plates carry opposite charges of equal magnitude. They are separated by a distance of 45.0 mm , and the potential difference between them is 365 V (A) What is the magnitude of the electric field (assumed to be uniform) in the region between the plates? (B) What is the magnitude of the force this field exerts on a particle with a charge of 2.10 nC ? (C) Use the results of part (b) to compute the...