Question

For the ideal inclined plane shown (greased with good Spanish olive oil so it’s frictionless) with...

For the ideal inclined plane shown (greased with good Spanish olive oil so it’s frictionless) with mass M1 on it.

  1. Draw the free-body (force) diagram for M1 (include axis).
  2. Solve for a formula for the acceleration of the mass M1.
  3. If M1 = 5kg and Ɵ = 30, what is the acceleration of M1?
  4. If the mass starts at the top and L – 10m, what is the speed as it reaches the bottom of the inclined plane?
  5. What will it’s kinetic energy be?

Homework Answers

Answer #1

As diagram is not provided, I have assumed that length L is of the slope.

If L is the length of height, then substitute then substitute 10 by 20 in part (e) , or drop a comment , I'll rectify it.

Please Upvote if you find the answer Helpful.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass M2 = 8.45 kg on a plane inclined moving down at angle...
A block of mass M2 = 8.45 kg on a plane inclined moving down at angle θ = 50° is connected by a cord over a massless, frictionless pulley to a second block of mass M1 = 5.36 kg on a horizontal surface. The coefficient of kinetic friction between M1, M2 and the surface is μk = 0.150, the Force F1 = 11.3 N is acting downward on M1, and the Force F2 = 21.8 N is acting on M2...
A frictionless plane is 10.0 m long and inclined at 42.0°. A sled starts at the...
A frictionless plane is 10.0 m long and inclined at 42.0°. A sled starts at the bottom with an initial speed of 4.60 m/s up the incline. When the sled reaches the point at which it momentarily stops, a second sled is released from the top of the incline with an initial speed vi. Both sleds reach the bottom of the incline at the same moment.
A 9.31 kg block is placed at the top of a frictionless inclined plane angled at...
A 9.31 kg block is placed at the top of a frictionless inclined plane angled at 14.9 degrees relative to the horizontal. When released (from rest), the block slides down the full 2.77 meter length of the incline. Calculate the speed (magnitude of the velocity) of the block at the bottom of the incline. [Start by drawing a free-body diagram for the block.] Note that all the information provided may not be necessary to solve the problem.
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle θ...
A block of mass m1 = 3.27 kg on a frictionless plane inclined at angle θ = 26.2° is connected by a cord over a massless, frictionless pulley to a second block of mass m2 = 2.60 kg hanging vertically (see the figure). (a) What is the acceleration of the hanging block (choose the positive direction down)? (b) What is the tension in the cord?
5.10 A frictionless plane is 10.0 m long and inclined at 28.0°. A sled starts at...
5.10 A frictionless plane is 10.0 m long and inclined at 28.0°. A sled starts at the bottom with an initial speed of 4.30 m/s up the incline. When the sled reaches the point at which it momentarily stops, a second sled is released from the top of the incline with an initial speed vi. Both sleds reach the bottom of the incline at the same moment. (a) Determine the distance that the first sled traveled up the incline. m...
1a.  a box of dirty money (mass m1 = 3.5 kg) on a frictionless plane inclined at...
1a.  a box of dirty money (mass m1 = 3.5 kg) on a frictionless plane inclined at angle θ1 = 37°. The box is connected via a cord of negligible mass to a box of laundered money (mass m2 = 1.3 kg) on a frictionless plane inclined at angle θ2 = 54°. The pulley is frictionless and has negligible mass. What is the tension in the cord? 1b. three blocks attached by cords that loop over frictionless pulleys. Block B lies...
A box with mass m = 1.2kg on an inclined frictionless surface is released from rest...
A box with mass m = 1.2kg on an inclined frictionless surface is released from rest from a height h = 1.35 m . After reaching the bottom of the incline the box slides with friction (μk=0.2) along a horizontal surface until coming to a rest after a distance d. 1. Draw a free body diagram for the box while it is on the incline. Clearly label all forces with standard names. 2. Draw a free body diagram for the...
A solid cylinder starts rolling without slipping from the top of an inclined plane. The cylinder...
A solid cylinder starts rolling without slipping from the top of an inclined plane. The cylinder starts moving from rest at a vertical height 10m. The mass of the cylinder is 1kg and its radius is .5m. The moment of inertia of the cylinder is 1/2 mr2 (where m is the mass of the cylinder and r is its radius). What is the speed of the center of mass of the cylinder when its vertical height is 4 mm ?...
A solid cylinder starts rolling without slipping from the top of an inclined plane. The cylinder...
A solid cylinder starts rolling without slipping from the top of an inclined plane. The cylinder starts moving from rest at a vertical height 10m. The mass of the cylinder is 1kg and its radius is .5m. The moment of inertia of the cylinder is 1/2 mr2 (where m is the mass of the cylinder and r is its radius). 1.What is the speed of the center of mass of the cylinder when its vertical height is 5 mm ?...
As shown in Figure 1, a block (mass: 2.4 kg) is initially at rest near the...
As shown in Figure 1, a block (mass: 2.4 kg) is initially at rest near the top of an inclined plane, oriented at a 25° angle above the horizontal. The coefficients of static and kinetic friction along the incline are 0.2 and 0.1, respectively. (a) Just after the block is released from rest, draw a free-body diagram for it. (Assume that the block is moving after being released from rest.) (b) Determine the magnitude of the normal force acting on...