Question

If a 120-W lightbulb emits 3.5 % of the input energy as visible light (average wavelength...

If a 120-W lightbulb emits 3.5 % of the input energy as visible light (average wavelength 550 nm) uniformly in all directions.

How many photons per second of visible light will strike the pupil (4.0 mm diameter) of the eye of an observer 1.6 m away? Express your answer using two significant figures. ΔN1Δt Δ N 1 Δ t = photons/s SubmitPrevious AnswersRequest Answer Incorrect; Try Again; 5 attempts remaining Part B How many photons per second of visible light will strike the pupil (4.0 mm diameter) of the eye of an observer 1.3 km away? Express your answer using two significant figures. ΔN2Δt Δ N 2 Δ t = nothing photons/s SubmitRequest Answer

Homework Answers

Answer #1

Hope this helps...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If a 120-W lightbulb emits 2.5 % of the input energy as visible light (average wavelength...
If a 120-W lightbulb emits 2.5 % of the input energy as visible light (average wavelength 550 nm) uniformly in all directions. Part A. How many photons per second of visible light will strike the pupil (4.0 mm diameter) of the eye of an observer 1.9 m away? Answer in photons/s Part B. How many photons per second of visible light will strike the pupil (4.0 mm diameter) of the eye of an observer 1.5 km away? Answer in photons/s
How many photons per second of visible light will strike the pupil (4.0 mm diameter) of...
How many photons per second of visible light will strike the pupil (4.0 mm diameter) of the eye of an observer 1.6 m away? Express your answer using two significant figures. ΔN1Δt Δ N 1 Δ t = photons/s SubmitPrevious AnswersRequest Answer Incorrect; Try Again; 5 attempts remaining Part B How many photons per second of visible light will strike the pupil (4.0 mm diameter) of the eye of an observer 1.3 km away? Express your answer using two significant...
A 100-W incandescent lightbulb radiates visible light at a rate of about 10.0 W; the rest...
A 100-W incandescent lightbulb radiates visible light at a rate of about 10.0 W; the rest of the EM radiation is mostly infrared. Assume that the lightbulb radiates uniformly in all directions. Under ideal conditions, the eye can see the lightbulb if at least 20.0 visible photons per second enter a dark-adapted eye with a pupil diameter of 7 mm. Estimate how far from the source the lightbulb can be seen under these rather extreme conditions. Assume an average wavelength...
Assuming that 10.0% of a 100 W light bulb's energy output is in the visible range...
Assuming that 10.0% of a 100 W light bulb's energy output is in the visible range (typical for incandescent bulbs) with an average wavelength of 580 nm, and that the photons spread out uniformly and are not absorbed by the atmosphere, how far away (in km) would you be if 580 photons per second enter the 3.00 mm diameter pupil of your eye? (This number easily stimulates the retina.)
Assuming that 10.0% of a 100 W light bulb's energy output is in the visible range...
Assuming that 10.0% of a 100 W light bulb's energy output is in the visible range (typical for incandescent bulbs) with an average wavelength of 580 nm, and that the photons spread out uniformly and are not absorbed by the atmosphere, how far away (in km) would you be if 414 photons per second enter the 3.30 mm diameter pupil of your eye? (This number easily stimulates the retina.)
Assuming that 10.0% of a 100 W light bulb's energy output is in the visible range...
Assuming that 10.0% of a 100 W light bulb's energy output is in the visible range (typical for incandescent bulbs) with an average wavelength of 580 nm, and that the photons spread out uniformly and are not absorbed by the atmosphere, how far away (in km) would you be if 596 photons per second enter the 3.20 mm diameter pupil of your eye? (This number easily stimulates the retina.)
The threshold of dark-adapted (scotopic) vision is 3.3 ? 10?11 W/m2 at a central wavelength of...
The threshold of dark-adapted (scotopic) vision is 3.3 ? 10?11 W/m2 at a central wavelength of 500 nm. If light with this intensity and wavelength enters the eye when the pupil is open to its maximum diameter of 8.3 mm, how many photons per second enter the eye? photons/s
A small helium-neon laser emits red visible light with a power of 5.90 mW in a...
A small helium-neon laser emits red visible light with a power of 5.90 mW in a beam that has a diameter of 2.60 mm . A)What is the amplitude of the electric field of the light? Express your answer with the appropriate units. B)What is the amplitude of the magnetic field of the light? C) What is the average energy density associated with the electric field? Express your answer with the appropriate units.
We can reasonably model a 40 W incandescent lightbulb as a sphere 5.0 cm in diameter....
We can reasonably model a 40 W incandescent lightbulb as a sphere 5.0 cm in diameter. Typically, only about 5.0 % of the energy goes to visible light; the rest goes largely to nonvisible infrared radiation. What is the visible light intensity (in W/m2) at the surface of the bulb? Express your answer in watts per meter squared. What is the amplitude of the electric field at this surface, for a sinusoidal wave with this intensity? Express your answer with...
A green leaf has a surface area of 2.05 cm2. If solar radiation is 1170 W/m2...
A green leaf has a surface area of 2.05 cm2. If solar radiation is 1170 W/m2 , how many photons strike the leaf every second? Assume three significant figures and an average wavelength of 504 nm for solar radiation. Express your answer using three significant figures. N = photons per second